DIII-D research in support of the ITER disruption mitigation system

by

N.W. Eidietis¹
P. Aleynikov², J.L. Herfindal³, E.M. Hollmann⁴, A. Lvovskiy⁵, R.A. Moyer⁴, P.B. Parks¹, C. Paz-Soldan¹, D. Shiraki³

¹General Atomics, San Diego, USA
²Max-Planck Institute for Plasma Physics, Greifswald, Germany
³Oak Ridge National Laboratory, Oak Ridge, USA
⁴University of California – San Diego, San Diego, USA
⁵Oak Ridge Associated Universities, Oak Ridge, USA

Presented at the 6th Annual Theory and Simulation of Disruptions Workshop Princeton, NJ (USA) July 16, 2018
DIII-D program aims to produce critical knowledge for the design & operation of the ITER Disruption Mitigation System

- Establish physics & limitations of shattered pellet injection (SPI)
- Probe the mechanisms governing runaway electron (RE) evolution
- Develop new “inside-out” mitigation by core impurity deposition
DIII-D program aims to produce critical knowledge for the design & operation of the ITER DMS

- Establish physics and limitations of shattered pellet injection (SPI)
- Probe the mechanisms governing runaway electron (RE) evolution
- Develop new “inside-out” mitigation by core impurity deposition
For several years, DIII-D has been only device able to test SPI, the baseline ITER DMS technology

- **Solid cryogenic impurity pellet shattered prior to entering plasma**
 1. Protects in-vessel components from a large solid pellet
 2. Improves assimilation due to increased surface area
 3. Provides faster response over long distances than massive gas injection (MGI)

- **DIII-D operates two SPI systems**
 - Toroidally separated by 120°

- **New SPI online 2018 (J-TEXT, JET)**

E.M. Hollmann et al., PoP 2015
Simultaneous injection of multiple SPI exhibits unexpected degradation in mitigation performance

- **ITER:** Multiple simultaneous SPI needed to reduce radiation asymmetries & provide massive D$_2$ input for RE suppression

- **DIII-D:** Simultaneous injection of two pellets (10 torr-L & 400 torr-L Ne) exhibits worse 0-D mitigation metrics than single 400 torr-L pellet

\[f = \frac{W_{\text{rad,TQ}}}{W_{\text{th}}} \]

Arrival = Reaching plasma edge
Simultaneous injection of multiple SPI exhibits unexpected degradation in mitigation performance

- **ITER**: Multiple simultaneous SPI needed to reduce radiation asymmetries & provide massive D_2 input for RE suppression

- **DIII-D**: Simultaneous injection of two pellets (10 torr-L & 400 torr-L Ne) exhibits worse 0-D mitigation metrics than single 400 torr-L pellet

Hypotheses

1. Lighter/faster SPI hits $q=2$ first, initiates TQ (**easy fix**)
2. Dilution cooling reducing ablation (**not ITER problem**)
3. Impurities in multiple flux tubes initiate TQ faster than single flux tube (**basic physics problem**)
Simultaneous injection of multiple SPI exhibits unexpected degradation in mitigation performance

- **ITER**: Multiple simultaneous SPI needed to reduce radiation asymmetries & provide massive D₂ input for RE suppression.

- **DIII-D**: Simultaneous injection of two pellets (10 torr-L & 400 torr-L Ne) exhibits worse 0-D mitigation metrics than single 400 torr-L pellet.

Hypotheses

1. Lighter/faster SPI hits q=2 first, initiates TQ *(easy fix)*
2. Dilution cooling reducing ablation *(not ITER problem)*
3. Impurities in multiple flux tubes initiate TQ faster than single flux tube *(basic physics problem)*

DIII-D experiments planned in 2019 to test hypotheses.
DIII-D program aims to produce critical knowledge for the design & operation of the ITER DMS

- Establish physics and limitations of shattered pellet injection (SPI)
- Probe the mechanisms governing runaway electron (RE) evolution
- Develop new “inside-out” mitigation by core impurity deposition
Two regimes used to study RE: Flattop "quiescent" runaway (QRE) & post-disruption RE plateau

QRE

- I_p (MA)
- $\langle n_e \rangle$ (10^{13} cm^{-3})
- HXR (log10 au)

RE Plateau

- I_p (MA)
- T_e (keV)
- HXR (au)

C. Paz-Soldan et al., PoP 2014

E.M. Hollmann et al, NF 2017
Two regimes used to study RE: Flattop “quiescent” runaway (QRE) & post-disruption RE plateau

Strengths of using QRE to study RE physics:
1. All DIII-D profile diagnostics available
2. Slow evolution
3. Trace RE avoid signal saturation
Observed RE f(E) exhibit qualitative agreement on collisional & synchrotron effects with theoretical model

- Non-monotonic peak observed at predicted energy
- Peak moves to lower energy with increased density (collisionality)
- Increasing B_T (synchrotron) suppresses high-energy RE

Model = 0-D Fokker-Planck + collisions & radiation
NO FREE PARAMETERS

C. Paz-Soldan et al, PoP 2018
C. Paz-Soldan et al, PRL 2017
Observed RE f(E) exhibit qualitative agreement on collisional & synchrotron effects with theoretical model

- Non-monotonic peak observed at predicted energy
- Peak moves to lower energy with increased density (collisionality)
- Increasing B_T (synchrotron) suppresses high energy RE

Significant quantitative discrepancy in high energy tail – possibly due to kinetic instabilities (later)

C. Paz-Soldan et al, PoP 2018
C. Paz-Soldan et al, PRL 2017
Anomalous behavior in the critical electric field (E_{crit}) for RE growth shows a strong energy dependence.

- Previous results (without energy resolution) found HXR decay at anomalously high E/E_{crit}.

- Energy-resolved measurements reveal E/E_{crit} threshold decreasing with increasing RE energy.

- Extrapolated E/E_{crit} threshold for 6MeV RE in good agreement with theory incorporating pitch angle scattering & synchrotron effects.

\[E/E_{\text{crit}} = 1 \]

\[\text{Modified} \sim 1.6 \]

\[\text{Lower energy} \]

1. Paz-Soldan et al, Phys Plasmas 2014
2. Granetz et al, Phys Plasmas 2014
3. Aleynikov & Breizman, PRL 2015
Anomalous dissipation remains large at low energy
... what is going on ??

1 Paz-Soldan et al, Phys Plasmas 2014
2 Granetz et al, Phys Plasmas 2014
3 Aleynikov & Breizman, PRL 2015

Anomaly between predicted & observed critical electric field \((E_{crit})\) for RE growth shows strong energy dependence

- Previous results (without energy resolution) found\(^1\)\(^-\)\(^2\) HXR decay at anomalously high \(E/E_{crit}\)

- Energy–resolved measurements reveal \(E/E_{crit}\) threshold decreasing with increasing RE energy

- Extrapolated \(E/E_{crit}\) threshold for 6MeV RE in good agreement with theory incorporating pitch angle scattering & synchrotron effects\(^3\)

\[\text{Growth Rate (1/s)}\]

\[\text{Old } E/E_{crit} = 1\]

\[\text{Modified } \sim 1.6\]

\[\text{Lower energy}\]

C. Paz-Soldan et al, PoP 2018
Inclusion of kinetic instability improves agreement of bremsstrahlung observations with modeling

- Slope of distribution better matched when kinetic instability included
- Calculation w/ waves reproduces experimental E/E_{crit} threshold
- Better match to synchrotron image

Inclusion of kinetic instability improves agreement of bremsstrahlung observations with modeling

- Slope of distribution better matched when kinetic instability included
- Calculation w/ waves reproduces experimental E/E_{crit} threshold
- Better match to synchrotron image

Inclusion of kinetic instability improves agreement of bremsstrahlung observations with modeling

- Slope of distribution better matched when kinetic instability included
- Calculation w/ waves reproduces experimental E/E_{crit} threshold
- Better match to synchrotron image

Inclusion of kinetic instability improves agreement of bremsstrahlung observations with modeling

- Slope of distribution better matched when kinetic instability included
- Calculation w/ waves reproduces experimental E/E_{crit} threshold
- Better match to synchrotron image

Inclusion of kinetic instability improves agreement of bremsstrahlung observations with modeling

- Slope of distribution better matched when kinetic instability included
- Calculation w/ waves reproduces experimental E/E_{crit} threshold
- Better match to synchrotron image
Two regimes used to study RE:
Flat-top “quiescent” runaway (QRE) & post-disruption RE plateau
RE plateau formation: High energy RE instabilities correlated with suppression of RE plateau formation after Ar MGI
RE plateau formation: High energy RE instabilities correlated with suppression of RE plateau formation after Ar MGI

- Small Ar quantities produce high energy RE & kinetic instabilities
- Increasing Ar reduces high-energy REs & suppresses kinetic instabilities

SEE A. LVOVSKIIY LATER THIS SESSION
RE plateau dissipation: Assimilation of impurities into RE plateau exhibits strong saturation

• At constant RE current, the # assimilated particles saturates as injected quantity increases…
RE plateau dissipation: Assimilation of impurities into RE plateau exhibits strong saturation

- At constant RE current, the # assimilated particles saturates as injected quantity increases...

- ... but the # of particles that can be assimilated increases with Ip
 - Further analysis needed to determine if linear

E. Hollmann et al 2018, in preparation
RE plateau dissipation: Assimilation of impurities into RE plateau exhibits strong saturation

- **DINA**: Fixed relationship between I_p & Z_p makes dissipation VERY difficult1,2
 - \uparrow Ar density $\rightarrow \uparrow$ VDE velocity $\rightarrow \uparrow E_{||}$
 - $E_{||}$ tends to “run away” from $E_0 \sim N_{ar}$

1. Konovalov 2016 | IAEA
2. Kiramov & Breizman PoP 2017
RE plateau dissipation: Assimilation of impurities into RE plateau exhibits strong saturation

- **DINA**: Fixed relationship between Ip & Zp makes dissipation VERY difficult\(^1,2\)
 - ↑ Ar density → ↑ VDE velocity → ↑ E\(_{||}\)
 - E\(_{||}\) tends to “run away” from E\(_0\)~N\(_{ar}\)

- **DIII-D**: Faster RE plateau dissipation rate → Lower final loss current

1. Konovalov 2016 IAEA
2. Kiramov & Breizman PoP 2017
RE plateau dissipation: Assimilation of impurities into RE plateau exhibits strong saturation

- **DINA**: Fixed relationship between I_p & Z_p makes dissipation VERY difficult\(^1,2\)
 - \uparrow Ar density \rightarrow \uparrow VDE velocity \rightarrow \uparrow $E_{||}$
 - $E_{||}$ tends to “run away” from E_0~N_{ar}

- **DIII-D**: Faster RE plateau dissipation rate \rightarrow Lower final loss current

- Modeling effort underway to understand discrepancy

1. Konovalov 2016 IAEA
2. Kiramov & Breizman PoP 2017
Recently excited kinetic instabilities in few eV RE RE RE plateau plasmas by reducing n_e and changing $f(e)$

- **Instability Needs Collisionless Plasma**
 - Low Density or High T_e
- **QRE experiments met this condition**
 - Thermal T_e is several keV
- **Post-disruption n_e can be reduced**
 - Essential to see instabilities
 - Loop voltage modification important

QRE Experiments

![Stability Diagram](image)
DIII-D program aims to produce critical knowledge for the design & operation of the ITER DMS

• Establish physics and limitations of shattered pellet injection (SPI)

• Probe the mechanisms governing runaway electron (RE) evolution

• Develop new “inside-out” mitigation by core impurity deposition
DIII-D developing new shell pellet technology to provide mitigation by core impurity deposition

Concept: Minimally perturbative shell transports radiating payload to core before ablating, releasing payload, & inducing TQ

Potential Benefits:

- **TQ:** “Inside-out” TQ mitigation → high radiated fraction
- **CQ:** Low-Z dust produces moderate CQ rate
- **RE:** Field stochastization & high \(n_e \) suppress RE seed

X-ray image of 3.6mm diameter 40μm thick B filled diamond shell

Izzo & Parks, PoP 2017

NW Eidietis/2018 TSDW/July 2018
Imaging indicates deep penetration of pellet before dust payload released

Pellet hits plasma edge...

30 mg B dust payload
Velocity ~ 230 m/s
Imaging indicates deep penetration of pellet before dust payload released

Pellet hits plasma edge...

30 mg B dust payload
Velocity ~ 230 m/s

flies to core...
Imaging indicates deep penetration of pellet before dust payload released

30 mg B dust payload
Velocity ~ 230 m/s
Imaging indicates deep penetration of pellet before dust payload released

30 mg B dust payload
Velocity ~ 230 m/s

Location consistent with prediction of 1-D shell penetration model
Limited evidence of shell producing inverted temperature profile ("inside-out mitigation")

![Graph showing line integrated density](image)

Line Integrated Density

10^{14} cm$^{-3}$ *m

Time (ms)

1660 1665 1670 1675 1680

Z (cm)

1660 1665 1670 1675 1680

Te (keV)

Before shell arrival

#176861 @ 1661.0 ms
Evidence of shell producing inverted temperature profile ("inside-out mitigation")

Before shell arrival

After shell arrival
DIII-D maintains a broad-based disruption mitigation program providing critical knowledge for the ITER DMS

- Qualifying SPI for use as the baseline ITER DMS technology
- Understanding the physics of RE formation and dissipation
- Exploring innovative paths for improving DMS technology

Disclaimer-This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Supported by U.S. Department of Energy under Awards DE-FC02-04ER54698, DE-FG02-07ER54917, and DE-AC05-00OR22725