Impact of initial plasma current and injected argon quantity on the runaway electron seed distribution

A. Lvovskiy¹, C. Paz-Soldan², N.W. Eidietis², A. Dal Molin³, X.D. Du⁴, J.L. Herfindal⁵, E.M. Hollmann⁶, L. Martinelli³, R.A. Moyer⁶, M. Nocente³, D. Shiraki⁵, M. Tardocchi⁷, K.E. Thome²

 ¹Oak Ridge Associated Universities, Oak Ridge, TN, USA
 ²General Atomics, San Diego, CA, USA
 ³Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
 ⁴University of California, Irvine, Irvine, CA, USA

⁵Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁶University of California San Diego, La Jolla, CA, USA ⁷Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, Milan, Italy

Presented at 6th Annual Theory and Simulation of Disruptions Workshop Princeton, June 16-18 2018

= Motivation =

- Various systems of pellet and massive gas injection are routinely used in disruption studies on DIII-D
- Runaway electron (RE) plateau experiments are usually triggered by Ar killer pellets:
 - Very reliable RE plateau generation
- Disruptions triggered by Ar MGI:
 - 60-70% success rate of RE plateau generation
- There is no clear explanation of such results

2

Formation of RE plateau in DIII-D using Ar MGI can be a hard thing: Example

177028	no RE plateau
177029	no RE plateau
177030	OK
177031	OK
177032	no RE plateau
177033	OK
177034	no RE plateau
177035	OK
177036	OK
177037	OK
177038	OK
177040	OK
177041	no RE plateau
177042	OK
177043	OK
177044	no RE plateau
177045	no RE plateau
177046	OK
177047	no RE plateau

RE plateau experiment in May 2018

- triggered by Ar MGI
- 60% success rate
- hardware issues are not included

3

Formation of RE plateau depends on amount of injected Ar

More Ar injected – higher success of RE plateau formation

4

Formation of RE plateau depends on amount of injected Ar

5

Formation of RE plateau depends on amount of injected Ar

6

= Key diagnostics =

- DIII-D is equipped with many world-class diagnostics
- Some diagnostics are not common among machines
- Gamma Ray Imager and Ion Cyclotron Emission diagnostic (measures fast magnetic fluctuations) are essential for RE studies

Bremsstrahlung radiation provides information on energy and distribution of REs

- γ rays are emitted in cones based on RE energy
- $f_e(E_{\parallel}, E_{\perp})$ produces unique bremsstrahlung spectrum

8

DIII-D gamma ray imager (GRI) provides 2D view of RE bremsstrahlung emission

- GRI is a pinhole camera
- Its array consists of gamma scintillator detectors (up to 123 places)
- Body and collimator block are made of lead (≈ 190 kg)

Pace et al. RSI 2016

9

DIII-D gamma ray imager (GRI) provides 2D view of RE bremsstrahlung emission

- GRI is a pinhole camera
- Its array consists of gamma scintillator detectors (up to 123 places)
- Body and collimator block are made of lead (≈ 190 kg)

Pace et al. RSI 2016

DIII-D gamma ray imager (GRI) provides 2D view of RE bremsstrahlung emission

- GRI is a pinhole camera
- Its array consists of gamma scintillator detectors (up to 123 places)
- Body and collimator block are made of lead (≈ 190 kg)

Pace et al. RSI 2016

A. Lvovskiy/TSDW/July 2018

DIII-D toroidal cross-section

• Time traces are comprised of pulses from distinct gamma particles

- Time traces are comprised of pulses from distinct gamma particles
- Gamma particles are analyzed via pulse height analysis (PHA)

- Time traces are comprised of pulses from distinct gamma particles
- Gamma particles are analyzed via pulse height analysis (PHA)
- Bremsstrahlung spectrum hardens in the course of time

A. Lvovskiy/TSDW/July 2018

Cooper et al. RSI 2016

- Time traces are comprised of pulses from distinct gamma particles
- Gamma particles are analyzed via pulse height analysis (PHA)
- Bremsstrahlung spectrum hardens in the course of time
- This talk is about RE plateau, though PHA technique is the same

A. Lvovskiy/TSDW/July 2018

Cooper et al. RSI 2016

Measurements during the RE plateau regime are challenging

- Gamma flux due to bremsstrahlung emission is higher by 10³–10⁴ in RE plateau regime compared to QRE
- BGO detectors are usually saturated after the disruption
- New LYSO+MPPC detectors are capable to measure during the post-disruption stage

Collaboration with U. Milano-Bicocca

Response of gamma detectors to a single gamma-pulse

Whistler waves were discovered in QRE regime – need to pay close attention to plasma kinetic instabilities

- Energetic REs can lead to the excitation of plasma waves
- Plasma waves can increase the dissipation of REs
- New paths to mitigate RE generation via induced kinetic instabilities could be discovered
- Measurements of highfrequency magnetic fluctuations are necessary during RE experiments

Spong et al. PRL 2018

Two outboard mid-plane systems detect high-frequency toroidal magnetic field fluctuations

System 1: 2015 ICRF antenna in receiver mode

- Outer straps regularly digitized

System 2: 2017 \tilde{B}_{φ} RF Loops

- 2 loops regularly used
- Incorporated into carbon tiles

Another tile antenna used with bandpass filters

Watson and Heidbrink RSI 2003 Thome et al. RSI 2018 (accepted)

ICE diagnostic on DIII-D

= Scenario of experiment =

- Ar MGI
- Ar amount 10–150 torr·l
- Plasma current 0.8 and 1.2 MA
- (Delayed D₂ puff to "purge" Ar, reduce plasma resistivity and achieve long-lived RE plateau)

= Scenario of experiment =

- Ar MGI
- Ar amount 10–150 torr·l
- Plasma current 0.8 and 1.2 MA
- (Delayed D₂ puff to "purge" Ar, reduce plasma resistivity and achieve long-lived RE plateau)

This talk is about RE plateau formation

 RE plateau is not formed every time:

50 torr I Ar – no RE plateau

130 torr'l Ar – RE plateau

 RE plateau is not formed every time:

50 torr I Ar – no RE plateau

130 torr⁻I Ar – RE plateau

Large Ar injection leads to quick RE plateau build-up

 RE plateau is not formed every time:

50 torr⁻l Ar – no RE plateau

130 torr·l Ar – RE plateau

- Large Ar injection leads to quick RE plateau build-up
- REs are actively lost during CQ

 RE plateau is not formed every time:

50 torr⁻l Ar – no RE plateau

- 130 torr·l Ar RE plateau
- Large Ar injection leads to quick RE plateau build-up
- REs are actively lost during CQ
- Interplay between generation and losses of REs can be a key to RE plateau formation

No RE plateau cases correlate with clear fast magnetic signals

No plateau case

No RE plateau cases correlate with clear fast magnetic signals

RE plateau case

A. Lvovskiy/TSDW/July 2018

Power/frequency (dB/Hz)

No RE plateau cases correlate with clear fast magnetic signals

A. Lvovskiy/TSDW/July 2018

SAN DIEGO

RE losses correlate with fast magnetic signals

Fast magnetic signals correlate with population of high-energy REs

Possible mechanism of suppression of RE plateau generation:

Example: Ar quantity scan

- Bremsstrahlung spectra of REs were obtained using GRI and PHA
- Integration time: first 10 ms (~ CQ time)
- <u>Accurate</u> inversion to RE distribution function during disruptions is complicated
- Though HXR and RE spectra
 are usually similar

= Analysis of RE bremsstrahlung spectra =

Example: Ar quantity scan

 Increased Ar quantity reduces the number of highenergy REs and correlates with successful RE plateau formation

= Analysis of RE bremsstrahlung spectra =

Example: Ar quantity scan

 Increased Ar quantity reduces the number of highenergy REs and correlates with successful RE plateau formation

Used as max E_{γ} (or max E_{RE})

High-energy REs? No RE plateau? Add more Argon

Increased Ar quantity reduces the number of highenergy REs and correlates with successful RE plateau formation

 Large high-energy RE tail correlates with no RE plateau cases

High-energy REs? No RE plateau? Add more Argon

Increased Ar quantity reduces the number of highenergy REs and correlates with successful RE plateau formation

- Large high-energy RE tail correlates with no RE plateau cases
- This is why we observed the threshold on injected Ar for successful generation of RE plateau

Large power of observed modes correlates with high-energy RE tail

- No RE plateau cases correlate with less steep HXR distribution function (more high-energy REs and less low-energy REs)
- RE distribution function most likely shifts towards higher energies in no plateau cases

Large power of observed modes correlates with high-energy RE tail

- No RE plateau cases correlate
 with less steep HXR distribution
 function (more high-energy
 REs and less low-energy REs)
- RE distribution function most likely shifts towards higher energies in no plateau cases
- Autopower of fast magnetic signals increases with increase of max E_{RE}

V/July 2018

Large Ip cases correlate with high-energy RE tail

SAN DIEGO

Increased pre-disruption Ip • increases the max energy of REs

Large Ip cases correlate with high-energy RE tail

39

- Increased pre-disruption Ip increases the max energy of REs
- Large high-energy RE tail correlates with no RE plateau cases

Larger Ip – more high-energy REs – more likely failure of RE plateau

- Increased pre-disruption Ip increases the max energy of REs
- Large high-energy RE tail correlates with no RE plateau cases

Larger Ip – more high-energy REs – more likely failure of RE plateau

- Increased pre-disruption Ip increases the max energy of REs
- Large high-energy RE tail correlates with no RE plateau cases
- This is why Ar threshold depends on lp

Large loop voltage correlates with no plateau cases

- Large pre-disruption lp
 provides more magnetic flux
- Large U_{loop} leads to higher acceleration of REs and greater E_{RE}
- Large high-energy RE tail correlates with no RE plateau cases

Large loop voltage correlates with no plateau cases

- Large pre-disruption lp provides more magnetic flux
- Large U_{loop} leads to higher acceleration of REs and greater E_{RE}
- Large high-energy RE tail correlates with no RE plateau cases

 Large amounts of Ar reduce the loop voltage

= Actuators of possible mechanism of RE plateau suppression: =

= Actuators of possible mechanism of RE plateau suppression: =

= Actuators of possible mechanism of RE plateau suppression: =

= Ar pellet case vs Ar MGI: reliable production of RE plateau and no instabilities =

Ar pellets vs Ar MGI:

- 1.5-2.5x times larger Uloop
- 2-3x times shorter t_{CQ}
- t_{CQ} and Uloop both are much more consistent
- Smaller integrated Uloop
- 2-3x times smaller max E_{γ}

= Ar pellet vs Ar MGI: reliable production of RE plateau and no kinetic instabilities =

Ar pellets vs Ar MGI:

- 1.5-2.5x times larger Uloop
- 2-3x times shorter t_{CQ}
- t_{CQ} and Uloop both are much more consistent
- Smaller integrated Uloop
- 2-3x times smaller max E_{γ}
- No or almost no fast magnetic modes

= Kinetic instabilities appear when $E_{RE} > 2.5$ MeV =

Modes go every 400 kHz up to 3 MHz

A. Lvovskiy/TSDW/July 2018

50

Magnetized plasma oscillations is a possible candidate

51

A. Lvovskiy/TSDW/July 2018

- Observed oscillations are at low frequencies
 - $\omega_{osc} \approx 0.3 \dots 3 MHz$
 - $\omega_{osc} \lesssim \omega_{ci} \sim 10 MHz$
- Possible plasma waves are magnetized electron plasma wave [1,2] and magnetosonic-whistler wave [3]
- Anomalous Doppler resonance is a possible driving mechanism

[1] Parail and Pogutse NF 1978
 [2] Aleynikov and Breizman NF 2015
 [3] Fülöp et al. PoP 2006

Summary

- Disruptions triggered by Ar MGI often produce no RE plateau
- Larger Ar quantity more reliably leads to RE plateau formation
- Increased pre-disruption Ip requires more Ar injected
- No RE plateau cases correlate with
 - high loop voltage
 - large number of high-energy REs
 - intense fast magnetic modes in the range 0.1–3 MHz
 - modes exist when $E_{RE} > 2-3 \text{ MeV}$
 - possible candidate is magnetized electron plasma waves
- Disruptions triggered by Ar pellet reliably produce RE plateau
- Key differences of Ar killer pellet compared to Ar MGI:
 - a few times smaller loop voltage
 - a few times smaller maximum energy of REs
 - almost no kinetic instabilities during CQ

52

Backup

Modes correlate with E_{RE}, plasma density and RE losses

A. Lvovskiy/TSDW/July 2018

parameters

54

Modes do NOT disappear because of possible plasma movement far from fast magnetic loops

Intense RE losses correlate with fast magnetic signals

Modes go every 300 kHz up to 1.5-3 MHz (different shot)

