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Bremsstrahlung & synchrotron from runaways
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B How to measure the runaway distribution?

B Runaways emit bremsstrahlung & synchrotron

B Measured in most larger tokamaks

» Bremsstrahlung: hard X-rays (~ MeV range)
» Synchrotron: visible & IR

B Give rise to “spots” in images
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B Give rise to “spots” in images
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Continuous acceleration
+ relativistic energy

— Radiation directed
along velocity vector
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Continuous acceleration
+ relativistic energy

— Radiation directed
along velocity vector

—> Radiation depends
on pitch angle (6,)



Directed radiation
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Continuous acceleration
+ relativistic energy

—> Radiation directed
along velocity vector

—> Probes
B Radial position
B Pitch angle
B Energy



SOFT
Synchrotron-detecting Orbit Following Toolkit

B Synthetic diagnostic for radiation
from runaways

Alcator C-Mod




SOFT
Synchrotron-detecting Orbit Following Toolkit

B Real(istic) magnetic geometry

Alcator C-Mod




SOFT
Synchrotron-detecting Orbit Following Toolkit

 Alcator C-Mod E B Includes RE distribution




SOFT
Synchrotron-detecting Orbit Following Toolkit

Alcator C-Mod

B Image/spectrum/Green’s function

Image/spectrum:/W(x,p)f(x,p)dxdp




The SOFT integral 4/14

deet_ n‘ﬁz r d2P

Integrate all emitted radiation d?P/d\dQ2
...with the distribution of particles f(x, p)

...from particles within field-of-view Q2 (over lines-of-sight n)

|
|
B . falling in along the line-of-sight n
|
B ..integrate over detector surface A
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The SOFT integral
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2
52 (; - n> 9P (x. p)dAdQndxdp

dAd$2

dA

Integrate all emitted radiation d?P/d\dQ

...with the distribution of particles f(x, p)

...falling in along the line-of-sight n

...from particles within field-of-view €2, (over lines-of-sight n)
B ..integrate over detector surface A




The SOFT integral 5/14

Trick in SOFT: Use other coordinates for [ ...dxdp
Parametrize using guiding-center orbits (x conservation) [ \
0, Initial major radius (outer midplane) 9)
X — < T, Time parameter along orbit \ i
. 7
o, Initial toroidal angle

Initial parallel momentum
p— §p,’, Initial perpendicular momentum
¢, Gyro-angle (averaged out)

Why?
B Guiding-center orbits = orders-of-magnitude faster computation

B Only need f(x, p) in outer midplane (as given by e.g. FP solvers)
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Trick in SOFT: Use other coordinates for | ...dxdp
Parametrize using guiding-center orbits (1 conservation)
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Radiation in SOFT 6/ 14

How to handle the emission, d?P/d\d2?

d?pP
Angular distribution: =...f .g. Jackson, 1
ngular distribution d0 rom e.g. Jackson, (1)
d?P 1 dP_
Cone model: da ?ﬂad (cos i — cos bp) (2)
(1) (2)
S
S >
E
0 1 2 3
Yo

a = Angle between particle velocity & line-of-sight



Radiation in SOFT 6/ 14

How to handle the emission, d?P/d\dQ2?

d?P
Angular distribution: —— =...f .9. Jack 1
ngular distribution 0 rom e.g. Jackson, (1)
d?p 1 dP_
Cone model: 9~ 2 a() (cos i — cos bp) @)
1) (2)
S
S >
=
0 1 2 3
gle’

a = Angle between particle velocity & line-of-sight



Radiation in SOFT 6/ 14

How to handle the emission, d?P/d\dQ2?

d?pP
Angular distribution: =...f .g. .
ngular distribution dO rom e.g. Jackson, (1)
d?P 1 .dP
I: = —— —
Cone mode da 2 d)\d(cos,u cos ) 2)
(1) (@)
S
5 >
=
0 1 2 3

gle?

a = Angle between particle velocity & line-of-sight



Radiation in SOFT 6/ 14

How to handle the emission, d?P/d\dQ2?

d?pP
istribution: =...f .g. Jackson, 1
Angular distribution 4d0 rom e.g. Jackson, (1)
d?P 1 .dP
. = —— — 2
Cone model da 2 d)\é(cos,u cos ) (2)

(~ 10-100 times faster)

(1) (@)

dP/dQ
\ 4

jale’

a = Angle between particle velocity & line-of-sight



Elements of a
RE radiation image



Surface-of-visibility
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Specify momentum

(P, o) = (Po, bo)

What does the corresponding
image look like?
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—7100%
Specify momentum 80%
(. 0p) = (Po; 0o)
, 60%
What does the corresponding
image look like?
40%
20%

0%
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r71100%

80%

60%

40%
Edges much brighter than body

20%

0%
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(with thickness)! 20%
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Surface-of-visibility 8/ 14

—100%
80%
60%
40%
Radiation emitted on “surface”
(with thickness)! 20%

— Line integration effect

0%



Parameter dependences
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Radial location Pitch angle Energy

Increablng Increasing

beam radius \\\\ piTh angle
Incrcablng
be‘un radius

L/

i

Increasing
pitch angle

High energy:

P(\) x VB
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Radial location Pitch angle Energy

Increaﬂng Increasing

beam radius \\\\ pitTch angle

Incredmng "‘
beam radius
Increasing =
pitch angle
Low energy:

P(\) o exp [— (BC/B)VS}
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Bremsstrahlung 40 :
log1o f(py, L)
30 +
Q
£ 9
8
10+
A
0 : ‘
Synchrotron 0 50 100 150

p|/mc

B Different generation mechanisms

» Bremsstrahlung: Collisions
» Synchrotron: Gyration

B Different windows into distribution
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Bremsstrahlung

Bremsstrahlung logqo f (,0|| ,PL)
30 | [= = Synchrotron

Synchrotron

.

0 50 100 150
p/me

B Different generation mechanisms

» Bremsstrahlung: Collisions
» Synchrotron: Gyration

M Different windows into distribution




Linearly polarized synchrotron radiation 11/14

Vertical filter

Unfiltered Horizontal filter

B Filters out body (horizontal) and edges (vertical)
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Vertical filter

Unfiltered Horizontal filter

\/' .

B Views same parts of momentum-space



Linearly polarized synchrotron radiation 11/14

Vertical filter

Unfiltered Horizontal filter

\/' .

B Closely coupled to magnetic geometry



Alcator C-Mod experiment
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C-Mod 1140403026, t ~0.742 s

B Low-density QRE in C-Mod
B B =54T on-axis
B Much synchrotron in visible range

0.5

C-Mod 1140403026 10
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Alcator C-Mod experiment 13/14

Understanding the synchrotron spot

1. Single energy (15MeV), single pitch angle (0.15 rad)
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Understanding the synchrotron spot

2. CODE distribution function from plasma parameters
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Understanding the synchrotron spot

3. + simple radial distribution

&S & s
logy, f/fo
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'
[o.g)

'
Nej
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Understanding the synchrotron spot

4. Radial distribution fit
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Summary 14/14

SOFT simulates runaway bremsstrahlung & synchrotron radiation
Radiation highly sensitive to both spatial & velocity parts of runaway distribution
Linearly polarized SR views same part part of distribution as unfiltered SR

Non-uniform radial density needed to explain C-Mod image

Further reading:
[1] Hoppe M. et al., SOFT: a synthetic synchrotron diagnostic, Nucl. Fusion 58 026032 2018
[2] Hoppe M. et al., Interpretation of runaway electron synchrotron and bremsstrahlung images, Nucl. Fusion 58 082001 2018

[3] Tinguely R. A. et al., Measurements of runaway electron synchrotron spectra at high magnetic fields in Alcator C-Mod, Nucl. Fusion 58 076019 2018

SOFT and other runaway electron tools are freely available at http://ft.nephy.chalmers.se/retools


http://ft.nephy.chalmers.se/retools

	Introduction
	Directed radiation
	SOFT
	Elements of a RE radiation image
	Polarization of synchrotron radiation
	Modeling experiments
	Summary

