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Motivation: Spatial Evolution of Runaway
Electrons

* The spatial profile of runaway electrons plays an important role in the
evolution of a disruption:
« Can shape the g-profile and thus influence MHD stability
+ Sets the inductance of the plasma = affects current decay rate

* Present reduced models of the evolution of a runaway electron
population assume electrons to be tightly localized to magnetic flux
surfaces [Smith et al. 2006, Konovalov et al. 2014, Martin-Solis et al. 2017]:

« Spatial transport neglected or treated in an ad-hoc manner

* In the presence of a 3D magnetic field transport is known to strongly impact
the lifetime (energy) of a runaway electron population [Papp et al. 2011]

» This work seeks to identify under what circumstances non-negligible
levels of runaway transport is present in the presence of good
magnetic flux surfaces

» Los Alamos
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Outline

* Impact of Toroidicity on avalanche growth rate/threshold

* Spatial transport of runaway electrons in an axisymmetric
plasma

* Drastic enhancement in the presence of partially ionized impurities
* Ware pinch < inward collapse of runaway electron population

* Implications for phase space distribution of runaway
electrons
* Runaway spatial eigenmode

» Los Alamos
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Description of Runaway Electrons

* Runaway electrons described by drift kinetic
equation

* Allows 5D phase space to be evolved
» Incorporates toroidal effects
« Spatial transport

« Small-angle collisions treated by Monte Carlo
collision operator [Boozer 1981]

* Partial screening included [Hesslow et al. 2017]

« Synchrotron radiation damping incorporated
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McDevitt et al. 2018

« Large-angle collisions (avalanche) described by Moller source

» Flux-surface averaged inductive electric field evolved via:

0B

VXE=——, V XB = puygj, E||=77(jp—jRA)

ot

Constant loop voltage (V},,, = 2rRE,, = const) assumed in this work

» Los Alamos
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Avalanche Growth Rate in a Tokamak

Avalanche mechanism sensitive to toroidal 0.1;
geometry [Rosenbluth 1997, Chiu et al. 1998, Eriksson
et al. 2003, Nilsson et al. 2015,...]

« Secondary electrons often born in trapped region
< cannot be directly accelerated T, 004

—

Hydrogen plasma
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Also useful to consider the number of 0021

exponentiations possible for a given change of or s
plasma current [Rosenbluth 1997, Boozer 2018]. _0.02 ‘ ‘ B )
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Well above marginality: °
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Number of potential exponentiations scales
linearly with plasma radius
» The spatial profile of runaway electrons strongly

impacts the efficiency of conversion of thermal

: : 0 012 0:4 016 018
current via the avalanche mechanism f/a




Impact of Toroidicity on Avalanche Threshold

Avalanche threshold only weakly impacted by
toroidicity

Well above threshold, runaway vortex strongly
affected by trapped-passing boundary
* Near threshold O and X points far from the
trapped-passing boundary < toroidicity only
weakly affects avalanche threshold
« Above threshold, runaway vortex occupies a

larger region of phase space < avalanche growth
rate strongly impacted
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Impact of Toroidicity on Avalanche Threshold

O H 1
Avalanche threshold only weakly impacted by > ydrogen plasma

toroidicity

Well above threshold, runaway vortex strongly
affected by trapped-passing boundary
* Near threshold O and X points far from the
trapped-passing boundary < toroidicity only
weakly affects avalanche threshold
« Above threshold, runaway vortex occupies a
larger region of phase space < avalanche growth
rate strongly impacted
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Impact of Toroidicity on Avalanche Threshold
(cont’d)

45, Avalanche Threshold

« Threshold more strongly affected for 4r 10
high-Z 4 plasmas 35 B
TN
* Presence of high-Z_; ions enhances w® 3///0/:;
pitch-angle scattering =%
« Broadens runaway distribution in 2 L Z=]
pItCh 1'5(; Oj 014 016 0.8
« Runaways more strongly affected Cinit
by trapped passing boundary
« Trend not captured in early studies
due to the neglect of synchrotron
radiation
- Los Alamos
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Collisional Transport of Runaway Electrons

« Collisional transport of runaway electrons is often assumed to be
negligible

» The collisional transport of runaway electrons can be estimated as:

2 RA

TeDra raA AT Ji C
2 Tt 52 VD

a 2a 2 a
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 where Ar ~ ¢vy/w, (banana width of runaway), 7evp ~ (Zegs + 1) /17,
and f/** is the fraction of trapped runaway electrons

« Comparing with thermal electrons yields (banana regime)
DRA iA/UTe

DTe ft C
* Implies negligible transport of runaway electrons due to collisions

<1

» Los Alamos
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Impact of Plasma Impurities/Partial Screening

Hesslow et al. 2017

* Impurities often injected as a means o olamic
of mitigating the heat load during R
I§ N = TF-DFT B
the thermal quench 2 10| —=DFT ;
. . . e . 2 F K e AT
- Radiate a significant fraction of N - —Ar
thermal energy 1ot | () inelastic T
LS E ________________ -_
. 51¢p) RO — — ]
« Resulting plasma composed of: = — Rt
* A low temperature bulk plasma ) [l=rp .,':5"
containing weakly ionized impurities " o S0 o2

» Relativistic electrons

« Relativistic electrons able to probe internal structure of partially
lonized impurity
* Runaway electrons able to probe unshielded nuclei = enhanced pitch-angle
scattering by a factor related to Z2

* Runaway electrons able to slow down against bound electrons =» enhances drag
by a factor of order Z

» Los Alamos
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Consequences for Runaway Electron
Distribution/Tranpsort

« Enhanced collisional scattering due Pure hydrogen plasma,

to partial screening leads to broader oz feslalis
distribution in pitch of runaway electron
distribution

« Collisional transport drastically
enhanced:

2
TCDQRA ~ tRA A_?; -
a 2a
» Pitch-angle scattering enhanced by
roughly two orders of magnitude
» Finite trapped particle fraction at high

energies

+
n 5 =1p,
. near threshold

» Los Alamos
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Spatial Transport of Runaway Electrons:
Diffusion

n", =0
» Collisional diffusion of runaway o' | : n* ir—nD/IO
electrons dramatically enhanced by 0 t i‘ ’ A=y
partially ionized impurities & I B
* A small amount of argon impurities 2 a0
enhances transport by more than o
an order of magnitude o ° 4 o
- Collisional diffusivity increases with o 0z o4 o6 o8 i
the amount of argon fraction e
» Los Alamos
INYSE



Spatial Transport of Runaway Electrons:
Convection

107 =
« Convection velocity similarly enhanced N, =np/10
2 LA n",=n
+ Convective transport enhanced via two e h Potliah
mechanisms: > L S S
 The presence of a significant impurity 10')
population increases the magnitude of f po¢ 0
the inductive electric field necessary to o | | | | |
sustain a runaway electron population 0 o2 04 06 08 !
* The increase of pitch-angle scattering
results in a larger population of 30;
energetic trapped electrons < allows ol goo?
significant contribution from the Ware ol g
pinch “\Jz A .
FZVare ~ tRA@ w® ol °
By ,
5
o ‘
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Spatial Transport: Role of Ware Pinch
t/t.=0 t/t.=0.5 t/t.=30

. Considerfing a ring of electrons initialized at a large radius (DIII-D like case)
« Strong pitch-angle scattering leads to the formation of energetic particle population
« Ware pinch convects a small fraction of energetic electrons inward
* Inwardly convected electrons are detrapped = run away
- Provide “seed” for avalanche instability near 7/a =~ 0

« Resulting runaway population strongly peaked near tokamak origin
» Final state largely independent of phase space distribution of “seed” electron population



Formation of Runaway Spatial Eigenmode

 Runaway electrons tend toward a spatial
eigenmode in long time limit

* Focusing of runaway electrons near
origin is due to:
* Inward convection, primarily due to the
Ware pinch
» Peaking of the avalanche growth rate
near r/a ~ 0 2

* Finite spatial spread determined by:
 Diffusion of runaway electrons
« Finite orbit width =P

» Los Alamos 0y 10 150
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Eigenmode Width and Relaxation Time

« Width and relaxation time to a spatial
eigenmode depends sensitively on the
impurity fraction of the plasma

« Larger impurity fraction tends to increase
the eigenmode width, reduce the
timescale TrA for the relaxation to the
eigenmode

« Pure hydrogen plasmas unlikely to
collapse to runaway eigenmode on
experimentally relevant time scales

» Los Alamos

NATIONAL LABORATORY
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Conclusions

« The transport of runaway electrons can be significant during
conditions typical of actively mitigated disruption scenarios even
when good flux surfaces are present

» Requires extension of momentum space formulations to account for real
space transport

* The presence of partially ionized impurities:
« significantly enhances transport
« aids in establishing centrally peaked runaway electron distribution

* In the long time limit, runaway electrons form a spatial eigenmode
near the tokamak origin

« Spatial eigenmode independent of runaway seed <~ enabled by spatial
transport

» Los Alamos
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Impact of Self-Consistent Evolution of Inductive
Electric Field

40

* Axisymmetric electric field evolved by: Threshold £
0B :
VXE:—E, VXB:,LLO.]

« where Ey =1 (j, — jra)

» Self-consistently computed inductive
electric field has non-trivial structure

« Conducting wall boundary condition forces
inductive electric field to decay at larger radii

0.55¢

» Rapid generation of runaways near r/a ~ 0

can result in a hollow profile o\ -~ - E=const
0457 \'\ —— E=self-consistent
« Transient evolution of the runaway g 04/
spatial profile strongly affected gé 035/
« Spatial mode width more weakly impacted 0.3f
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