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Motivation: Spatial Evolution of Runaway 
Electrons 
•  The spatial profile of runaway electrons plays an important role in the 

evolution of a disruption: 
•  Can shape the q-profile and thus influence MHD stability 
•  Sets the inductance of the plasma è affects current decay rate 

•  Present reduced models of the evolution of a runaway electron 
population assume electrons to be tightly localized to magnetic flux 
surfaces [Smith et al. 2006, Konovalov et al. 2014, Martin-Solis et al. 2017]: 
•  Spatial transport neglected or treated in an ad-hoc manner 

•  In the presence of a 3D magnetic field transport is known to strongly impact 
the lifetime (energy) of a runaway electron population [Papp et al. 2011] 

•  This work seeks to identify under what circumstances non-negligible 
levels of runaway transport is present in the presence of good 
magnetic flux surfaces 



Outline 

•  Impact of Toroidicity on avalanche growth rate/threshold 

•  Spatial transport of runaway electrons in an axisymmetric 
plasma 
•  Drastic enhancement in the presence of partially ionized impurities 
•  Ware pinch ó inward collapse of runaway electron population 

•  Implications for phase space distribution of runaway 
electrons 
•  Runaway spatial eigenmode 



Description of Runaway Electrons 
•  Runaway electrons described by drift kinetic 

equation 

•  Allows 5D phase space to be evolved 
•  Incorporates toroidal effects 
•  Spatial transport 

•  Small-angle collisions treated by Monte Carlo 
collision operator [Boozer 1981] 

•  Partial screening included [Hesslow et al. 2017] 

•  Synchrotron radiation damping incorporated 

•  Large-angle collisions (avalanche) described by Möller source 

•  Flux-surface averaged inductive electric field evolved via: 

                                                                              , 

•  Constant loop voltage (                                    ) assumed in this work 
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Avalanche Growth Rate in a Tokamak 
•  Avalanche mechanism sensitive to toroidal 

geometry [Rosenbluth 1997, Chiu et al. 1998, Eriksson 
et al. 2003, Nilsson et al. 2015,…] 

•  Secondary electrons often born in trapped region 
ó cannot be directly accelerated 

•  Also useful to consider the number of 
exponentiations possible for a given change of 
plasma current [Rosenbluth 1997, Boozer 2018]. 

•  Well above marginality: 

•  Number of potential exponentiations scales 
linearly with plasma radius 

•  The spatial profile of runaway electrons strongly 
impacts the efficiency of conversion of thermal 
current via the avalanche mechanism 
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Impact of Toroidicity on Avalanche Threshold 

•  Avalanche threshold only weakly impacted by 
toroidicity 

•  Well above threshold, runaway vortex strongly 
affected by trapped-passing boundary 

•  Near threshold O and X points far from the 
trapped-passing boundary ó toroidicity only 
weakly affects avalanche threshold 

•  Above threshold, runaway vortex occupies a 
larger region of phase space ó avalanche growth 
rate strongly impacted  

Trapped-passing 
boundary 

Momentum Flux Slab: Near Threshold Momentum Flux Slab: Above Threshold 
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Impact of Toroidicity on Avalanche Threshold 

•  Avalanche threshold only weakly impacted by 
toroidicity 

•  Well above threshold, runaway vortex strongly 
affected by trapped-passing boundary 

•  Near threshold O and X points far from the 
trapped-passing boundary ó toroidicity only 
weakly affects avalanche threshold 

•  Above threshold, runaway vortex occupies a 
larger region of phase space ó avalanche growth 
rate strongly impacted  

Trapped-passing 
boundary 

Momentum Flux Torus: Above Threshold Momentum Flux Slab: Near Threshold 

(Guo, this afternoon) 
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Impact of Toroidicity on Avalanche Threshold 
(cont’d) 

•  Threshold more strongly affected for 
high-Zeff plasmas 

•  Presence of high-Zeff ions enhances 
pitch-angle scattering 
•  Broadens runaway distribution in 

pitch 
•  Runaways more strongly affected 

by trapped passing boundary 

•  Trend not captured in early studies 
due to the neglect of synchrotron 
radiation 
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Collisional Transport of Runaway Electrons 

•  Collisional transport of runaway electrons is often assumed to be 
negligible 

•  The collisional transport of runaway electrons can be estimated as: 

•  where                      (banana width of runaway),                                 , 
and         is the fraction of trapped runaway electrons 

•  Comparing with thermal electrons yields (banana regime) 

•  Implies negligible transport of runaway electrons due to collisions 
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Impact of Plasma Impurities/Partial Screening 

•  Impurities often injected as a means 
of mitigating the heat load during 
the thermal quench 
•  Radiate a significant fraction of 

thermal energy 

•  Resulting plasma composed of: 
•  A low temperature bulk plasma 

containing weakly ionized impurities 
•  Relativistic electrons 

•  Relativistic electrons able to probe internal structure of partially 
ionized impurity 

•  Runaway electrons able to probe unshielded nuclei è enhanced pitch-angle 
scattering by a factor related to Z2 

•  Runaway electrons able to slow down against bound electrons è enhances drag 
by a factor of order Z 

Hesslow et al. 2017 
The parameter k ¼ 5 is chosen to give a smooth transition
between the low-energy formula lnΛ0 ¼ 14.9 −
0.5 lnðne½1020m−3$Þ þ lnðTe½keV$Þ [25] and the high-
energy formula from Refs. [26,27].
To calculate the form factor, the electron charge density

of the ion can be obtained via, e.g., DFT calculations; in
this work we have used the numerical tool EXCITING [28].
Our calculations show that the form factor can be well
described by a single-parameter model of the same form as
that obtained from the Thomas-Fermi model by Kirillov
et al. [16]: Fj;TF-DFTðqÞ ¼ Ne;j=½1þ ðqajÞ3=2$. This model,
which we denote the Thomas-Fermi–DFT (TF-DFT)
model, gives
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where yj ¼ 2ajp=α. Note that the limit of complete screen-
ing (gjðpÞ → 0) is reached as p → 0 or for Zj ¼ Z0;j.
The parameter aj—the effective ion size in units of Bohr
radii—depends on the ion species and ionization degree, and
was determined by fitting gj in Eq. (6) to Eq. (5) evaluated
with the DFT output. For example, we obtain aAr ¼ 0.353,
aArþ ¼ 0.329, aAr2þ ¼ 0.306, aAr3þ ¼ 0.283, aAr4þ ¼ 0.260,
aAr5þ ¼ 0.238, aXeþ ¼ 0.238, and aBeþ ¼ 0.414.
The TF-DFT model agrees well with the prediction of

full DFT simulations. Figure 1(a) shows the energy-
dependent enhancement of the deflection frequency nor-
malized to the completely screened value, together with
the fit given in Eq. (6) for singly and doubly-ionized argon.
The deflection frequency is already almost 2 orders of
magnitude higher than the corresponding complete-screen-
ing value at electron energies of a few hundred keV (p ≈ 1).
Inelastic collisions.—The energy loss in electron-

electron collisions is described by the Bethe stopping-
power formula [15,29], which modifies the slowing-down
frequency νeeS describing collisional drag according to
νeeS ¼νeeS;cs½1þ

P
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τ−1c γ2=p3 is the completely screened, superthermal slow-
ing-down frequency, hj ¼ p
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p
=Ij, and Ij is the mean

excitation energy of the ion, normalized to the electron rest
energy. In this work, the numerical values of Ij for different
ion species were obtained from Ref. [30]. This model is
valid for γ − 1 ≫ Ij, corresponding to p≳ 0.03 for both
singly and doubly ionized argon. We provide here an
interpolation formula, from matching the above to the low-
energy asymptote corresponding to complete screening,
which we will refer to as the Bethe-like model:
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As in our model of lnΛ, we set k ¼ 5.
Figure 1(b) shows the enhancement of the slowing-down

frequency as a function of the electron energy. Note that
already around a few tens of keV, the enhancement using

the Bethe-like model (black) is an order of magnitude.
The transition between the Bethe equation and the
low-energy limit can be clearly seen at p ≈ 0.02. It is
instructive to compare these results to the Rosenbluth-
Putvinski (RP) rule of thumb that the effect of inelastic
collisions can be modeled by adding half of the bound
electrons to the free electron density [31]: νeeS;RP≈
νeeS;cs½1þ 1

2

P
jnjNe;j=ne$. This approximation [green line

in Fig. 1(b)] leads to a much greater enhancement than
the full formula up to p≃ 0.1. This region in momentum
space is important, since runaway generation is sensitive to
the dynamics at the critical momentum pc, which often is
in the region pc ≲ 0.1. The effect of inelastic collisions on
the electron-electron deflection frequency νeeD does not
follow from the stopping-power calculation, but is of order
X−1 smaller than νeiD and can be ignored for low ionization
degrees.
Numerical simulations.—The generalized collision oper-

ator presented here, consisting of Eqs. (1), (4), (6), and (7),
has been implemented in the numerical tool CODE [32–34],
which we use to solve the spatially homogeneous kinetic
equation for electrons in 2D momentum space, including
electric-field acceleration, collisions, and synchrotron-
radiation reaction losses.
We demonstrate the effects of reduced screening by

investigating the decay phase of the runaway evolution. In
the scenario considered, an electron distribution with an
energetic runaway tail (with average energy 7.8 MeV),
produced by a strong electric field, was used as the initial
state. During the simulation of the decay phase, the weak
electric field E ¼ 2Ec was used, which is well below the
effective critical field if reduced screening effects are taken
into account. To isolate the effect of reduced screening,

(a)

(b)

FIG. 1. (a) The deflection frequency and (b) the slowing-down
frequency as a function of the incoming-electron momentum,
normalized to the completely screened collision frequencies. The
models employed here (TF-DFT and Bethe-like) are plotted in
black, while the full DFT model and the approximate RP model
are shown in green. Note in (a) the lines overlay almost exactly. A
pure argon plasma [of either Arþ (dotted line) or Ar2þ (dash-
dotted line)], with T ¼ 10 eV and nAr ¼ 1020 m−3 was assumed,
giving lnΛþ

0 ¼ 9.9 and lnΛ2þ
0 ¼ 10.3.
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Consequences for Runaway Electron 
Distribution/Tranpsort 
•  Enhanced collisional scattering due 

to partial screening leads to broader 
distribution in pitch of runaway electron 
distribution 

•  Collisional transport drastically 
enhanced: 

•  Pitch-angle scattering enhanced by 
roughly two orders of magnitude 

•  Finite trapped particle fraction at high 
energies ξ

γ−1
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Spatial Transport of Runaway Electrons: 
Diffusion 

•  Collisional diffusion of runaway 
electrons dramatically enhanced by 
partially ionized impurities 
•  A small amount of argon impurities 

enhances transport by more than 
an order of magnitude 

•  Collisional diffusivity increases with 
the amount of argon fraction 
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Spatial Transport of Runaway Electrons: 
Convection 

•  Convection velocity similarly enhanced 

•  Convective transport enhanced via two 
mechanisms: 
•  The presence of a significant impurity 

population increases the magnitude of 
the inductive electric field necessary to 
sustain a runaway electron population 

•  The increase of pitch-angle scattering 
results in a larger population of 
energetic trapped electrons ó allows 
significant contribution from the Ware 
pinch 
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Spatial Transport: Role of Ware Pinch 

•  Considering a ring of electrons initialized at a large radius (DIII-D like case) 
•  Strong pitch-angle scattering leads to the formation of energetic particle population 
•  Ware pinch convects a small fraction of energetic electrons inward 
•  Inwardly convected electrons are detrapped è run away 
•  Provide “seed” for avalanche instability near 

•  Resulting runaway population strongly peaked near tokamak origin 
•  Final state largely independent of phase space distribution of “seed” electron population 
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Formation of Runaway Spatial Eigenmode 

•  Runaway electrons tend toward a spatial 
eigenmode in long time limit 

•  Focusing of runaway electrons near 
origin is due to: 
•  Inward convection, primarily due to the 

Ware pinch 
•  Peaking of the avalanche growth rate              

near  

•  Finite spatial spread determined by: 
•  Diffusion of runaway electrons 
•  Finite orbit width 
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Eigenmode Width and Relaxation Time 

•  Width and relaxation time to a spatial 
eigenmode depends sensitively on the 
impurity fraction of the plasma 

•  Larger impurity fraction tends to increase 
the eigenmode width, reduce the 
timescale        for the relaxation to the 
eigenmode 

•  Pure hydrogen plasmas unlikely to 
collapse to runaway eigenmode on 
experimentally relevant time scales 
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Conclusions 

•  The transport of runaway electrons can be significant during 
conditions typical of actively mitigated disruption scenarios even 
when good flux surfaces are present 
•  Requires extension of momentum space formulations to account for real 

space transport 

•  The presence of partially ionized impurities: 
•  significantly enhances transport 
•  aids in establishing centrally peaked runaway electron distribution 

•  In the long time limit, runaway electrons form a spatial eigenmode 
near the tokamak origin 
•  Spatial eigenmode independent of runaway seed ó enabled by spatial 

transport 





Impact of Self-Consistent Evolution of Inductive 
Electric Field 

•  Axisymmetric electric field evolved by: 

•  where  

•  Self-consistently computed inductive 
electric field has non-trivial structure 

•  Conducting wall boundary condition forces 
inductive electric field to decay at larger radii 

•  Rapid generation of runaways near            
can result in a hollow profile 

•  Transient evolution of the runaway 
spatial profile strongly affected 

•  Spatial mode width more weakly impacted 
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