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Machine Learning Disruption Predictor Overview

o V< occurs

Goal: To develop a robust, data-driven algorithm that successfully predicts disruption events with
sufficient warning time

Databases of relevant parameters on DIII-D, Alcator C-Mod, EAST, and KSTAR

Implemented a real-time predictor running in the plasma control system on DIII-D
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Disruption Warning Database

* Focus on dataset of 1258 plasma discharges (disruptive & non- T — I
disruptive) from DIII-D 2015 campaign (~ 10° time samples)
% error of plasma current and (Ip — Iyrog)/1p
programmed current

Poloidal beta By
Greenwald density fraction n/ng

Safety factor at 95% of minor qos
radius

i Loop voltage [V] Vioop
H Stored plasma energy [ Wi

I n = 1 mode amplitude Aanl/B¢

Plasma internal inductance ?;

N
(]
I

Radiated power fraction, Praa/ Pinput

—_
I

R P

o
o
l

Plasma Current [MA]

iiiiik normalized to By,
L T AR TR AR - Te

e S

B e el

Shot #164278 |
gl T T T | profile width normalized to T,/a
46 4.7 4.8 4.9 5 5.1 5.2 minor radius

K. Montes — Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018 3



Binary Classification Based on Disruptive Phase Assumption

* Focus on dataset of 1258 plasma discharges (disruptive & non-
disruptive) from DIII-D 2015 campaign (~ 10° time samples)
% error of plasma current and (Ip — Iyrog)/1p

* Classify sample t using class label threshold, 7 ;445 programmed current

* close to disruption (t4;srypt — t < Tcigss) Poloidal beta By

. . . Greenwald density fraction n/n
* far from disruption (either t ;e — t > Tggss OF Y /M

sample is from non-disruptive shot) Safety fac“’:aztif:% of minor 905
|

- Loop voltage [V] Vioon
- Stored plasma energy [] Winna
- n = 1 mode amplitude AB"=1/B,
.- normalized to By,

! Plasma internal inductance €

Radiated power fraction, Praa/ Pinput

I | 1
I | 1
I | 1

"
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | |
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1
I | | 1

Plasma Current [MA]

Shot #164278
0: N N T IHIHIHHI\ o T, profile width normalized to T,/a
52

1 | } L
46 47 48 49 5 5.1 minor radius

Pl Time [s] T~
[Far from Disruption] :\ [Close to Disruption]

tdisrupt — Tclass

K. Montes — Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018 4



probability histogram -

Classification of Time-Samples Using Random Forest

* Preliminary analysis — chose 7.;,5c = 350 ms based on physics parameter distributions
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From Time-Sample Predictions to Real-Time Alarms

Each tree in the random forest outputs
one of two possible outputs:

e O (far from disruption)

* 1 (close to disruption)

Final RF output is the average of the
individual tree predictions — we call this
the disruptivity
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From Time-Sample Predictions to Real-Time Alarms

Each tree in the random forest outputs
one of two possible outputs:

e O (far from disruption)

* 1 (close to disruption)

Final RF output is the average of the
individual tree predictions — we call this
the disruptivity

How do we use the disruptivity to
trigger an alarm?

* Trigger when disruptivity exceeds
hysteresis threshold for a specific
time window
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Shot-by-Shot Binary Classification

* C(Classify each shot according to whether or not it disrupted:

* Disruption (positive class) or Non-disruption (negative class)

Was the alarm triggered?

SXN© Yes No predfcz*eo’
6\0’@690
e
o Did the shot disrupt? Did the shot disrupt?
Yes No
True Positive False Positive False Negative True Negative
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Parameter Optimization

1. Time-Sample Class Label Threshold (7.;4s5) \
2. Disruptivity Threshold (d) \ RF level

3. Time Window Size (w) < Alarm level (post-processing)
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Parameter Optimization

1.
2.
3.

Time-Sample Class Label Threshold (7,;45s)

Disruptivity Threshold (d)
Time Window Size (w)

—

Training
Set

<&
<«

I

RF level

Test
Set

Alarm level (post-processing)

K. Montes — Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

10



Parameter Optimization

Time-Sample Class Label Threshold (7.;4s5) \
Disruptivity Threshold (d) \ RF level

Time Window Size (w) < Alarm level (post-processing)

Training ' Test
Set

Set

Need cross-validation process to ensure a robust performance metric and the model’s
generalization capabilities

Test
Set

Training ' Validation
Set Set

Optimize over loop
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K-Fold Cross Validation

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Pseudocode:

Validation Train Train Train Train
Train Validation Train Train Train
Train Train Validation Train Train
Train Train Train Validation Train
Train Train Train Train Validation

For i in [1,5]:
For each class label time, Tt_..:
Train random forest on X # X(i)
Get time-slice predictions on X = X(i)
For each disruptivity/window pair:
Test alarm simulation on X = X(i)
Calculate performance metrics
After loop:
Average performance metrics over all 5
iterations for each parameter triplet

Pick best disruptivity threshold,
class label time

window, and
(triplet that maximizes F1)
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Maximizing the F1 Score (Figure of Merit)

* Grid Search:
* Disruptivity d € [0.1,0.95]
* Alarm Window w € [5,405] ms

* Class Label Time 7.4s € [25,800] ms
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Maximizing the F1 Score (Figure of Merit)

F1 Score
* Best operational point (with W,
highest average F1 score):
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_ t
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* Shorter alarm windows tend to , c | 1048
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i Y5 |14 0.40
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75% of Test Set Disruptions Predicted > 40ms in Advance

* Trained random forest on entire training set using optimized 7.5

* Tested random forest predictor on entire test set using optimized d, w

Non-Disruptions (217) 100
2 E E A

80

Disruptions (36)

60 +

® True Negatives m False Alarms 20 +

Accumulated Fraction of Detected Disruptions (%)

0 s S S T N U R O
10~ 10t

® Predicted Disruptions  ® Missed Warnings Warning Time [s]

10°

K. Montes — Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

15



Test Set Interpretability

Shot #163052
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False Predictions

* Most false predictions show small or negative contributions from q95, the normalizedn = 1
radial field component, and/or n/n;
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Summary

e Our data-driven cross-validation procedure validates our univariate analysis of the distinction
between ‘disruptive’ and ‘non-disruptive’ phases on plasma discharges

 Of the 10 signals in our DIII-D 2015 database, the 3 most relevant are:

1. q95
2. AB"=1/B¢
3. n/ng

 Our model runs at very low cost (low false positive rate), and predicts =~ 75% of disruptions

Future Work

* Improve cross-validation procedure with a time-dependent metric, so that the ‘best’ operational
point is a function of the physics parameters

 Compare results to an algorithm that incorporates time-dependency
* Test robustness of results by applying to larger database of different campaigns and facilities

* Expand set of input physics parameters
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Backup Slides
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Disruption Warning Database

SQL databases with Matlab, IDL, and Python queries
All disruptions included, regardless of cause
~ 40 plasma parameters at each time sample/record
Parameters potentially available in real time
During training, we avoid using...

o Non-causally filtered data

o Intentional disruptions

Device Discharges  Time Samples

C-Mod 5507 498,925
EAST 14713 1,209,217
DIII-D 10258 2,356,519
KSTAR 4219 773083

o Disruptions caused by hardware failure (specifically check for feedback control on plasma

current or UFOs events)

o Time samples not in the flattop phase
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Random Forest

* An ensemble of many uncorrelated classification and regression trees

e At each nodein the each tree, the data set is split on a random feature by minimizing impurity
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Test Set Interpretability

* For feature vector x, can express disruptivity f (x) as sum of K feature contributions & bias term

* Tracking feature contributions can give idea of drivers of disruptive behavior

- Feature contribution breakdown:
Prediction: 0.94 = 0.96 (model bias)

True Fal
W - 0.38 (loss, V1oop)
V;:f;;jﬁ:z +0.19 (gain, Te_ width normalized)
samples = 5.2% + 0.1/ (gain, g95)
value = [0.58, 0.42] . L. .
f' Prediction function for one tree:
o_width_normalized <= 0.7832 Wmhd <= 2692416875
[ T E::.:.;:**;; FG)=b+ Y contrib(x, k)
unlue-mn u.za]  value = [0.33, u.s?] —
P e":,:,'“u‘;:mm Prediction function for a forest of J trees:
samples = 2.2% ] K ]
value = [(.71, 0.29] ) 1 1
F(x)== ) bj + 7 contrib;(x, k)
] & — \ | L
j=1 k=1 Jj=1
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Real-Time Implementation

175552
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