

Nonlinear dynamics of toroidal Alfvén eigenmodes in presence of a tearing mode

Z.W. Ma

collaborators: J. Zhu and W. Zhang

Institute for Fusion Theory and Simulation, Zhejiang University

Outline

- ▶ <u>1. Background</u>
- 2. A brief introduction of CLT-K code and its benchmark
- ➤ <u>3. Simulation results</u>
 - **≻<u>a. n=2 EPM</u>**
 - ▶ b. TAE & Tearing mode
- ≻<u>Summary</u>

Toroidal Alfven eigenmodes (TAEs)

3

1.5 Elevation

-0.5

-1

0

0.5

In DIII-D experiments, it is found that TAE can lead to a large percentage of EP loss!

FIG. 9. Dependence of TAE activity on neutral beam power in discharge 71 524. The fast ion beta predicted by using classical

[E. Strait Nuclear Fusion

Tearing mode instability

- Tearing mode instability driven by electric current is one of the most important instabilities in magnetized plasmas.
- Many eruptive phenomena in both space and laboratory are believed to be associated with the tearing mode instability.
- Tearing mode instability is regarded as the primary cause for degradation of the plasma performance in Tokamak.

HL-2A

J-TEXT

High frequency branch(TAE/BAE) and low frequency(TM) are always observed on HL-2A and J-TEXT experiments.

W. Chen at. el. EPL, 107 (2014) 25001

HL-2A

Weakly chirping of TAEs

Pitch-Fork of TAEs

Strong TM activities lead to nonlinear mode-mode couplings and TAEs are weakly chirping. **Pitch-Fork TAEs is observed without tearing modes.**

P. W. Shi at. el. Physics of Plasmas 24, 042509 (2017)

NIMROD (Takahashi 2009)

M3D-K (Cai huishan2011)

R. Takahashi, D. P. Brennan, and C. C. Kim, *Phys. Rev. Lett.* 102, 135001(2009)
H. Cai, S. Wang, Y. Xu, J. Cao, and D. Li, *Phys. Rev. Lett.* 106, 075002 (2011)
H. Cai and G. Y. Fu, *Phys. Plasmas* 19, 072506 (2012).

2. A brief introduction of CLT-K code and its benchmark

The MHD component of CLT-K is based on CLT (Ci-Liu-Ti means MHD in Chinese) which is an initial value code that resolves the full set of resistive Hall MHD equations in 3D toroidal geometries.

►R

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v}) + \nabla \cdot [D\nabla(\rho - \rho_0)]$$

$$\frac{\partial p_e}{\partial t} = -\mathbf{v} \cdot \nabla p - \Gamma p_e \nabla \cdot \mathbf{v} + \nabla \cdot [\mathbf{k} \nabla (p - p_0)]$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\mathbf{v} \cdot \nabla \mathbf{v} + (\mathbf{J} \times \mathbf{B} - \nabla p_e) / \rho + \nabla \cdot [\nu \nabla (\mathbf{v} - \mathbf{v}_0)]$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta (\mathbf{J} - \mathbf{J}_0) + \frac{1}{ne} (\mathbf{J} \times \mathbf{B} - \nabla P_e)$$

 $\mathbf{J} = \nabla \times \mathbf{B}$

S. Wang and Z. W. Ma, *Phys. Plasmas* **22**, 122504 (2015); ¹³/_{3 313233343536373839 4</sup> S. Wang, Z. W. Ma, and W. Zhang, *Phys. Plasmas* **23**, 052503 (2016)}

The Hybrid Kinetic-MHD Equations

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v}) + \nabla \cdot [D\nabla(\rho - \rho_0)]$$

$$\frac{\partial p_e}{\partial t} = -\mathbf{v} \cdot \nabla p - \Gamma p_e \nabla \cdot \mathbf{v} + \nabla \cdot [\mathbf{k} \nabla(p - p_0)]$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\mathbf{v} \cdot \nabla \mathbf{v} + [(\mathbf{J} - \mathbf{J}_E) \times \mathbf{B} - \nabla p_e] / \rho + \nabla \cdot [\nu \nabla (\mathbf{v} - \mathbf{v}_0)]$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta (\mathbf{J} - \mathbf{J}_0) + \frac{1}{ne} (\mathbf{J} \times \mathbf{B} - \nabla P_e)$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

W. Park, S. Parker, H. Biglari, M. Chance, L. Chen, C. Z. Cheng, T. S.Hahm, W. W. Lee, R. Kulsrud, D. Monticello, L. Sugiyma, and R. B. White, *Phys. Fluids B* **4**, 2033 (1992).

Drift kinetic equations for energetic particles

$$\frac{d\mathbf{X}}{dt} = \frac{1}{B_{\parallel}^*} \begin{bmatrix} v_{\parallel} \mathbf{B}^* + \mathbf{E}^* \times \mathbf{b} \end{bmatrix}$$
Cary 2009
$$\frac{dv_{\parallel}}{dt} = \frac{Z_h e}{m B_{\parallel}^*} \mathbf{B}^* \cdot \mathbf{E}^*$$

where

$$\begin{split} \mathbf{B}^* &= \mathbf{B} + \frac{mv_{||}}{Z_h e} \nabla \times \mathbf{b} + \frac{m}{Z_h e} \nabla \times \mathbf{v}_E \qquad B_{||}^* = \mathbf{B}^* \cdot \mathbf{b} \\ \mathbf{E}^* &= -\nabla \Phi^* - \frac{\partial \mathbf{A}^*}{\partial t} = \mathbf{E} - \frac{m}{Z_h e} \left[\frac{1}{m} \mu \nabla B + \frac{1}{2} \nabla |\mathbf{v}_E|^2 + v_{||} \frac{\partial \mathbf{b}}{\partial t} + \frac{\partial \mathbf{v}_E}{\partial t} \right] \\ \mathbf{v}_E &= \frac{\mathbf{E} \times \mathbf{B}}{B^2} \end{split}$$

J. R. Cary and A. J. Brizard, Rev. Mod. Phys. 81, 693 (2009).

کھ کھ کھ کھ کھ Current J_E from energetic particles

$$egin{aligned} \mathbf{J}_E &= & \mathbf{J}_{ ext{GC}} + \mathbf{J}_{ ext{MAG}} + \mathbf{J}_{ ext{POL}} \ &= & \int Z_h e(\mathbf{v}_{ ext{curvature}} + \mathbf{v}_{
abla B} + \mathbf{v}_B + \mathbf{v}_{EB}) f(\mathbf{v}) d\mathbf{v} \ &-
abla imes \int \mu \mathbf{b} f(\mathbf{v}) d\mathbf{v} + \int Z_h e \mathbf{v}_{ ext{polarization}} f(\mathbf{v}) d\mathbf{v}. \end{aligned}$$

Parameters for n=1 TAE benchmark study

• Equruimbirum parameters

$$n=1, R_0/a=3, q=1.1+\Psi, \langle eta_{ ext{total}}
angle=0.5\%$$

Hot particle parameters

$$v_0/v_A = 1.7, \rho_h/a = 0.085, \left< eta_h \right>_{\mathrm{av}} = 0.4\%$$

• Slowing down distribution

$$f_0(P_{\phi}, E, \Lambda) = \frac{1}{v^3 + v_c^3} \left[1 + \operatorname{erf}\left(\frac{v_0 - v}{0.2v_A}\right) \right] \exp\left(-\frac{\langle \psi \rangle}{0.37\Delta\psi}\right)$$

• For simplify

$$\left\langle \psi \right\rangle = -P_{\phi}/Z_{h}e + \frac{m}{Z_{h}e} \left\langle v_{\parallel}R\frac{B_{\phi}}{B} \right\rangle \approx -P_{\phi}/Z_{h}e$$

Benchmark study on nonlinear n=1 TAE

3. Simulation results

<u>a. n=2 EPM (PoP,2016)</u>

- Parameters for n=2 EPM simulation
 - > n=2
 > q₀ = 1.25
 > Beta av = 0.016

$$\langle \psi \rangle = \begin{cases} -P_{\phi}/(Z_{h}e) &, \mu B_{0}/E > 1\\ -P_{\phi}/(Z_{h}e) + \frac{m}{Z_{h}e} \operatorname{sgn}(v_{\parallel}) v R_{0} \sqrt{1 - \mu B_{0}/E} &, \mu B_{0}/E \le 1 \end{cases}$$

<u>Time evolution of frequency n=2 mode driven</u> <u>by isotropic energetic particles</u>

<u>Time evolution of mode structure for n=2 mode</u>

Time evolutions of peak values for two poloidal harmonics (m=2 and 3)

1. m=2 and m=3 modes are almost the same during the linear stage, which is TAE-like structure.

2. The m=2 mode is overtaken than the m=3 mode for a short period.

3. The m=3 mode becomes dominant at the late time.

Mode power struture

EPM (initially TAE-like or rTAE) is linearly unstable and one component of EPM remains the frequency unchanged while another component of EPM chirps down to a BAE gap during the nonlinear phase, which can be called BAE-like EPM.

Comparisons of δf for $\Lambda = 0.50$

The same movement is also observed for Λ =0.00,0.25 cases, but it is more evident for Λ =0.50 cases

b. n=1 TAE and tearing mode NF,2018

• Equruimbirum parameters

 $R_0=4m$, a=1m, $\beta_{thermal}=0$, $\eta=10^{-5\sim-7}$

• Hot particle parameters

$$v_0/v_A = 1.7,
ho_h/a = 0.085, ig eta_h ig _{
m av} =$$
 1.6%

• Slowing down distribution

$$f_0(P_{\phi}, E, \Lambda) = \frac{1}{v^3 + v_c^3} \left[1 + \operatorname{erf}\left(\frac{v_0 - v}{0.2v_A}\right) \right] \exp\left(-\frac{\langle \psi \rangle}{0.37\Delta\psi}\right)$$

 $,\mu B_0/E > 1$ $,\mu B_0/E \le 1$

• For simplify

$$\langle \psi \rangle = \begin{cases} -P_{\phi}/(Z_{h}e) \\ -P_{\phi}/(Z_{h}e) + \frac{m}{Z_{h}e} \operatorname{sgn}(v_{\parallel}) v R_{0} \sqrt{1 - \mu B_{0}/E} \end{cases}$$

Assumption:

▶ 1. The effect of fast ions on the equilibrium are neglected.
▶ 2. Only *n*=1 component for J_h is considered .

<u>Time evolution of the mode with different β_h </u>

For small β_h : weakly stabilization effect For large β_h : destabilization effect Final nonlinear saturation levels are almost same.

Time evolution of the mode(\beta_h=0.008)

Time evolution of different components of mode

Evolution of power spectrum for different mode

Secondary mode

High frequency branch : TAE Low frequency branch : tearing mode

Radial structure of mode power spectrum

TM: low frequency around the q=2 rational surface(r=0.5) **TAE**: high frequency peaked near r=0.4 and splits into two branches

m/n=2/1 poloidal harmonic first split into two branches

<u>Comparisons for different resistivity</u>

← Linear: Small resistivity: damping(TAE) Large resistivity: destabilize(tearing mode)

Nonlinear:

 $\eta \uparrow \quad frequency \ chirping \downarrow \\$

<u>Comparisons of radial frequency structure for</u> <u>different resistivity</u>

Tearing mode make the frequency chirping weaker!

<u>Comparisons of phase space structure for</u> <u>different resistivity for passing particle</u>

Comparison w/o EP

total ke

low frequency part of $E\phi$

0.01

0.005

0 0

0.2

0.4

0.6

 $\sqrt{\psi_{\rm norm}}$

0.8

Snapshot of low frequency mode

structure 5 <u>×10</u>-3 $t = 1971 \omega_A^{-1}$

Three figs are correspond to three peaks in evolution of kinetic energy. Here the mode structure is time averaged with $78\omega_A^{-1}$ region

TM effect on TAE

Here omega=0.06±0.02

With inclusion of source and sink

TAE re-bursts are observed with increase of collisional frequency.

$$C(f) = \nu_d \frac{\partial}{\partial \lambda} \left(1 - \lambda^2 \right) \frac{\partial}{\partial \lambda} f + \frac{\nu}{v^2} \frac{\partial}{\partial v} \left(v^3 + v_c^3 \right) f$$

pitch angle scattering and slowing down are included in the collisional operator

Three successive TAE bursts are detected in the distribution of the power spectrum

<u>ZHEJIA</u> <u>4. Brief Summary</u>

- > EPM (initially TAE-like or rTAE) is linearly excited.
- During the nonlinear phase, one poloidal component (m=2) of EPM remains the frequency unchanged while another poloidal component (m=3) of EPM chirps down to a BAE gap. The m/n=3/2 mode becomes dominant at the late time
- The n = 1 TAE is first excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the n = 1 TAE, the m/n = 2/1 tearing mode grows continuously and reaches its steady state due to nonlinear mode-mode coupling.
- The enhancement of the tearing mode activity with increase of the resistivity could weaken the TAE frequency chirping through the interaction between the p = 1 TAE resonance and the p = 2 tearing mode resonance for passing particles in the phase space, which is opposite to the classical physical picture of the TAE frequency chirping that is enhanced with increase of dissipation.

Thank you for attention!

