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/ Error-Field Driven Magnetic Reconnection \

e Magnetic island chain propagates at fixed frequency (in ion
diamagnetic direction®) w.r.t. E x B frame at resonant surface.

e Steady-state island chain maintained in plasma by error-field must
have fixed phase relation w.r.t. resonant component of error-field:
I.e., 1sland chain must be static.

e Implies that plasma rotation at resonant surface modified s.t.
natural frequency of island chain (i.e., E x B frequency plus
diamagnetic offset) is zero.

e Error-field exerts e.m. locking torque at resonant surface to effect
change in plasma rotation. Rotation change resisted by plasma ion

viscosity and flow damping.

2R. Fitzpatrick, PoP 25, 042503 (2018); R.J. La Haye, et al., PoP 10, 3644

\(2003); P. Buratti, et al., NF 56, 076004 (2016). /
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Suppression of Error-Field Driven Reconnection

e Q: What happens if error-field cannot exert requisite e.m. locking
torque at resonant surface?

e A: Driven magnetic reconnection at resonant surface suppressed
by large inductive current sheet.?

e Current sheet also gives rise to e.m. slowing-down torque acting
on resonant surface. Torque insufficient to reduce natural
frequency of island chain to zero.

aR. Fitzpatrick, NF 33, 1049 (1993).




/ Linear Model of Suppressed State \

e Can model suppressed state using linear layer theory.?

e According to linear theory (and unlike nonlinear theory), plasma
flow does not necessarily convect reconnected magnetic flux at

resonant surface.

e Reconnected flux phase-locked to resonant component of
error-field: i.e., flux non-rotating.

e Plasma flow relative to flux gives rise to steady phase-shift of flux

w.r.t. resonant component of error-field.

e Current in linear layer partially suppresses magnetic reconnection;
also gives rise to slowing-down e.m. torque at resonant surface.

2R. Fitzpatrick, NF 33, 1049 (1993); R. Fitzpatrick, PoP 5, 3225 (1998); A. Cole

\and RF, PoP 13, 032503 (2006). /




4 )

Problems with Linear Model of Suppressed State

e Linear layer theory invalidated as soon as island width (i.e., width
of magnetic separatrix) exceeds layer width.

e Width of magnetic separatrix scales as square-root of reconnected
magnetic flux: i.e., small amount of residual reconnection at
resonant surface can produce wide island.

e Linear layer width scales as S~'/4. Layer width minuscule in high
temperature tokamak plasma.

e Totally implausible that driven reconnection suppressed to such
extent that island width falls below linear layer width. Need
nonlinear model of suppressed state.
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/ Nonlinear Model of Suppressed State? \

e Impossible for island chain to have fixed phase relation w.r.t.
resonant component of error-field if natural frequency nonzero.

e Suppose phase instantaneously destabilizing. Island width grows.

e Nonzero natural frequency causes island chain to propagate.
Chain eventually acquires stabilizing phase. Island width shrinks.

e If island width shrinks to zero, X-points < O-points; equivalent to
180° phase jump. Converts stabilizing phase relation into
destabilizing one. Island width grows again.

e Error-field drives pulsating island chain whose width periodically
falls to zero. Associated phase jumps allow average phase relation
to remain destabilizing, despite propagation of chain.

\ 2R. Fitzpatrick, PoP 5, 3225 (1998). /
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IFS Island Dynamics Model

e Over course of many vyears, IFS scientists have developed analytic,
single-helicity, fully nonlinear, neoclassical, two-fluid model of
magnetic island dynamics in quasi-cylindrical tokamak plasma.?

e Model solves self-consistently for island width, island phase,
density /temperature profiles, plasma flow profiles, and current
profile in vicinity of resonant surface. Island frequency w.r.t.
E x B frame calculated, rather than assumed.

e Can use model to investigate nonlinear suppressed state.

2R.D. Hazeltine, M. Kotschenruether, P.J. Morrison, PoF 28, 2466 (1985); R.
Fitzpatrick, F.L. Waelbroeck, PoP 12, 022307 (2005); RF, FLW, PoP 16, 072507
(2009); RF, PPCF 54, 094002 (2012); RF, PoP 25, 042503 (2018).
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Static Error Field Below Penetration Threshold
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/ Phase-Space Trajectory \
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Error-Field Ram
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Phase-Space Trajectory \
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/ Recent DIII-D RMP ELM Suppression Data?® \
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\ 2R. Nazikian, et al., to appear in Nuclear Fusion (2018). /
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Discussion

DIII-D data can be interpreted as showing pulsating magnetic
island chains driven at separate n =1, n = 2, n = 3 resonant

surfaces in outer regions of plasma.

Island phase velocities and ion toroidal velocity modulate in sync
with island widths in manner predicted by IFS model.

n = 1 island chain rotates in electron diamagnetic direction
relative to lab frame: n = 2, n = 3 chains rotate in ion

diamagnetic direction.

Due to strong ExB shear in edge region, expect driven island
chains resonant just inside pedestal to rotate in electron
diamagnetic direction; island chains resonant further towards edge

/

rotate in ion diamagnetic direction.
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Conclusions

e DIII-D data can only be explained on basis of nonlinear physics.
According to linear physics, magnetic flux driven at resonant
surface by static error-field cannot propagate, even in presence of

plasma rotation.

e Minimum physics requirements for analysis of RMP ELM
suppression data. Model must be resistive, rather than ideal;
two-fluid, rather than single-fluid; nonlinear, rather than linear;
must incorporate neoclassical viscosity (otherwise get wrong island
propagation frequency); must determine island frequency
self-consistently.

\_ /
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