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Automated identification of rotating MHD modes can
be a practical tool for disruption forecast efforts

2 Motivation:

Validate the automated identification of rotating MHD instabilities in a
tokamak plasma

Develop a disruption warning level based on rotating MHD activity

a Talk Outline

Analysis and automated identification of rotating MHD

Set of criteria used to determine a warning level for disruptions

NSTX examples of varying plasma activity the code is tested on

Summary & next steps
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Toroidal magnetic probes measure amplitude of
magnetic field perturbations from modes
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Spectral decomposition of probe signals used to identify the
mode number and rotation frequency
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Simplified generated spectrogram for further analysis of
rotating MHD modes

Q Selected peak amplitude frequency from bandwidth

0 Performed smoothing fit on frequency curves
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Rotating MHD modes create a friction in the plasma that
leads to slowing of the modes and potential locking

2 Natural frequency of mode rotation is reached due to a force
balance of drag and driving auxiliary heating

2 In the process of slowing down the mode can lose force
balance leading to a frequency bifurcation
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Severity of mode determined from criteria based on rotating
MHD analysis and relevant plasma signals

Criteria  |Description
Low fre_quency 15  |Locked n=1 strong
magnetic probes 14 |Outer core rotation
. . 13 [Mid core rotation
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Example 1: Archetypal mode bifurcation and locking

0 Separate into three periods of mode activity
During startup

At start of flat top
At start of ramp-down
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1st Period: Safe mode and plasma activity is shown by
relatively low disruption warning level
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2"d Period: Modes lead to dip in plasma rotation but plasma
recovers and warning levels remain low
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3rd Period: Warning level increases as plasma bifurcates,
locks, and disrupts
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Example 1: Complete shot overview of warning levels
shows relative severity of mode activity
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Example 2: Mode slowing and locking without bifurcation

QO Bifurcation may be avoided if island size reduces through mode evolution

O Separate into 2 regions:
Sharp decrease in mode rotation frequency
Slowing and locking without a bifurcation (then disrupts)
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1st Period: Sharp drop in mode rotation leads to increase in warning level
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2"d Period: Rising warning level without bifurcation due to
low plasma and mode rotation
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Example 2: Complete shot overview of warning levels shows
relative severity of mode evolution
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Example 3: Tearing mode approaching marginal island width

ad More subtle case as the aim is to stabilize the mode with
decreasing island size

0 Locked modes amplify after plasma rotation is low enough
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Example 3: Warning level increases primarily by lowered
plasma rotation and mode frequency even at low amplitude
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Example 4: Rotating MHD modes disappear and
plasma disrupts

0O The spectrogram follow a similar pattern for locked
mode predominant shots

Rotating MHD modes disappear after startup
Very low-f mode activity near disruption
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Example 4: Rotating MHD event warning levels correctly

miss locked mode induced disruption

criteria

warning level
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New automated identification of rotating MHD modes in
DECAF is showing good success for disruption forecasting

Q Summary

Developed a tool for analysis of rotating MHD mode activity in a
tokamak plasma

Used the tool to generate preliminary criteria for determining disruption
warning levels. Tested in a variety of cases.

2 Next steps

Improve the identification of the bifurcation event with known physics
models

Optimize the rotating MHD analysis parameters for improved
identification of the mode

Couple the rotating MHD event to other events in DECAF (e.g.
reduced RWM model)

Improve the definition, and optimize the logic and weights of the
criteria for improved disruption forecasting
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Thank you for listening

Any Questions?
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BACKUPS
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Shot 126963
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Shot 126963

O Low betaN shot with increasing li (betaN/li outside of stable
range)
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Shot 130190
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Shot 123855
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Torque balance of plasma rotation shows frequency
bifurcation due to mode drag

d

Q The drag torque from plasma viscosity is expected to be
negative and proportional to the angular speed of the plasma
(like friction):

(1Q)

T2p

Tp =

2 The EM drag torque is more complicated and depends on
whether the plasma slips with respect to the magnetic flux

2 “No slip™ a “Slips”™

k
Thode = —51 Tmode = —k1{)

Q k, is proportional to the island width of TM
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The model using a “no slip” condition has no steady state
solutions at a large enough island width (k)

QO For steady state d(I1Q) ki  (IQ)
T
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dt
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Outline (~25 slides)

0 Introduction (2)
a Algorithm description (5)
Q Criteria description (4)

0 Results (10)

NSTX (5)

* Case 1

* Case 2

* Case 3
KSTAR (5)
* Case 1

* Case 2

* Case 3

0 Concl. & next steps (larger database, more machines,

—Difurcation) (2) ________
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