

Rotating MHD Analysis for Disruption Event Characterization and Forecasting

J.D. Riquezes¹, S.A. Sabbagh¹, J.W. Berkery¹, Y.S. Park¹, J.H. Ahn¹, Y. Jiang¹, R.E. Bell², E. Fredrickson^{2,} L.A. Morton³

¹Department of Applied Physics, Columbia University, New York, NY ²Princeton Plasma Physics Laboratory, Princeton, NJ ³Oak Ridge Associated Universities, Oak Ridge, TN

Automated identification of rotating MHD modes can be a practical tool for disruption forecast efforts

□ <u>Motivation</u>:

- Validate the automated identification of rotating MHD instabilities in a tokamak plasma
- Develop a disruption warning level based on rotating MHD activity

□ Talk Outline

- Analysis and automated identification of rotating MHD
- Set of criteria used to determine a warning level for disruptions
- NSTX examples of varying plasma activity the code is tested on
- Summary & next steps

Toroidal magnetic probes measure amplitude of magnetic field perturbations from modes

Mode rotation can be detected by magnetic "pick up" coils placed toroidally around the tokamak

Spectral decomposition of probe signals used to identify the mode number and rotation frequency

Consecutive short time FFTs give the phase and amplitude of a signal in frequency and time

The phase shifts at every frequency and time point for the channel array should match with the expected toroidal angle dependence of the predominant n mode.

Simplified generated spectrogram for further analysis of rotating MHD modes

Selected peak amplitude frequency from bandwidth

Performed smoothing fit on frequency curves

shot 130198

Rotating MHD modes create a friction in the plasma that leads to slowing of the modes and potential locking

- Natural frequency of mode rotation is reached due to a force balance of drag and driving auxiliary heating
- In the process of slowing down the mode can lose force balance leading to a frequency bifurcation

Severity of mode determined from criteria based on rotating MHD analysis and relevant plasma signals

- Low frequency magnetic probes
- Rotation Profiles
- $\square \quad \beta_N \text{ and internal inductance}$
- Mode amplitude
- Past bifurcation
- Magnitude of frequency

Criteria	Description
15	Locked n=1 strong
14	Outer core rotation
13	Mid core rotation
12	Low core rotation
11	Dec. outer rotation
10	Dec. mid rotation
9	Dec. core rotation
8	Low li
7	β _N /li range
6	Decreasing β_N
5	Strong mode
4	Bifurcation
3	High-freq
2	Low-freq
1	Lock freq

- Criteria cover magnetic and kinetic properties of the plasma relevant to rotating MHD mode evolution
- Summed criteria with the appropriate weights to generate disruption warning level

shot 130198

Example 1: Archetypal mode bifurcation and locking

Separate into three periods of mode activity

- During startup
- At start of flat top
- At start of ramp-down

shot 138854

1st Period: Safe mode and plasma activity is shown by relatively low disruption warning level

C 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

2nd Period: Modes lead to dip in plasma rotation but plasma recovers and warning levels remain low

🛿 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

3rd Period: Warning level increases as plasma bifurcates, locks, and disrupts

6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

Example 1: Complete shot overview of warning levels shows relative severity of mode activity

C 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

Example 2: Mode slowing and locking without bifurcation

- Bifurcation may be avoided if island size reduces through mode evolution
- □ Separate into 2 regions:
 - □ Sharp decrease in mode rotation frequency
 - Slowing and locking without a bifurcation (then disrupts)

1st Period: Sharp drop in mode rotation leads to increase in warning level

6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

2nd Period: Rising warning level without bifurcation due to low plasma and mode rotation

C 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

Example 2: Complete shot overview of warning levels shows relative severity of mode evolution

C 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 (INSTX-U 16

Example 3: Tearing mode approaching marginal island width

- More subtle case as the aim is to stabilize the mode with decreasing island size
- Locked modes amplify after plasma rotation is low enough

shot 130190

Example 3: Warning level increases primarily by lowered plasma rotation and mode frequency even at low amplitude

shot 130190

Example 4: Rotating MHD modes disappear and plasma disrupts

- The spectrogram follow a similar pattern for locked mode predominant shots
 - Rotating MHD modes disappear after startup
 - Very low-f mode activity near disruption

Example 4: Rotating MHD event warning levels correctly miss locked mode induced disruption

Reference of the Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

New automated identification of rotating MHD modes in DECAF is showing good success for disruption forecasting

Summary

- Developed a tool for analysis of rotating MHD mode activity in a tokamak plasma
- Used the tool to generate preliminary criteria for determining disruption warning levels. Tested in a variety of cases.

Next steps

- Improve the identification of the bifurcation event with known physics models
- Optimize the rotating MHD analysis parameters for improved identification of the mode
- Couple the rotating MHD event to other events in DECAF (e.g. reduced RWM model)
- Improve the definition, and optimize the logic and weights of the criteria for improved disruption forecasting

Thank you for listening

Any Questions?

KSTAR 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 INSTX-U 22

BACKUPS

KSTAR 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 INSTX-U 23

KSTAR

KSTAR 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

K[§]**TAR** 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18

Low betaN shot with increasing li (betaN/li outside of stable range)

Torque balance of plasma rotation shows frequency bifurcation due to mode drag

- □ The drive torque T_{aux} from neutral beam injection
- The drag torque from plasma viscosity is expected to be negative and proportional to the angular speed of the plasma (like friction):

$$T_{2D} = -\frac{(I\Omega)}{\tau_{2D}}$$

- The EM drag torque is more complicated and depends on whether the plasma slips with respect to the magnetic flux
- "No slip":
 "Slips":
 $T_{mode} = -\frac{k_1}{\Omega}$ $T_{mode} = -k_1 \Omega$ k_1 is proportional to the island width of TM

The model using a "no slip" condition has no steady state solutions at a large enough island width (k_1)

Bifurcation • At close to half the steady state natural rotation frequency (Ω_0)

🗛 🌈 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 (🚺 NSTX-U 32

KSTAR 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 INSTX-U 33

Outline (~25 slides)

- Introduction (2)
- □ Algorithm description (5)
- □ Criteria description (4)
- Results (10)
 - NSTX (5)
 - Case 1
 - Case 2
 - Case 3
 - □ KSTAR (5)
 - Case 1
 - Case 2
 - Case 3

Concl. & next steps (larger database, more machines, bifurcation) (2)

R 6th Annual TSDW 2018: Rotating MHD Analysis for Disruption Event Characterization and Forecasting. JDR 07/16-19/18 INSTX-U 34