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e Visco-resistive MHD NIMROD computations are being applied
to understand asymmetric VDE physics.

 Thermal quench
e Current spike
* Current quench
e Wall forcing
* Problem parameters are those previously described.

o Tu~l << Ty ~10° << 7, ~10°
e x=10%%, : w=100v, ; Pm(0) =50

e Better numerical resolution justifies detailed analysis.
* O=sn=<2l

* Some cases have been evolved through CQ.




The 3D computations described here starts from an up-

down symmetric equilibrium.
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Contours of poloidal flux and pressure for

Safety factor and pressure profiles. the initial state. Border is the resistive wall.

* VDEs are initiated by removing current from the upper divertor coil
(outside the resistive wall).




The edge of the initial profile is linearly unstable with a

conducting wall.

* With the large edge resistivity and no flow, edge modes are unstable.

Growth rates computed for the initial
equilibrium with conducting wall. g
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* Low-n growth rates increase only R
somewhat with a resistive wall Peeling-type m =4, n =1
with 1,1 /UoAx = 1x 107 . mode is concentrated on the

inboard side. (n =1 pressure
is shown.)




General behavior: Continuous MHD activity develops and

evolves throughout the simulated transient.

 The dominant mode changes with increasing wall contact.
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Kinetic energy fluctuations (0sn<21) indicate

multiple events over time.
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pressure contours perturbations are
primarily show m=3. primarilym= Z.W



Global diagnostics show that plasma current persists

longer, and energy confinement shorter, with asymmetry.

 The strong m =2, n =1 activity shown previously is at the start of
the thermal quench.
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As the dominant mode changes from m =3 tom = 2, loss

of flux surfaces initiates the thermal quench.

e Results shown here are from a closely related 0 <n <21 computation.
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* Poincaré surfaces of section overlaid on pressure show the topology
changes that lead to energy loss.




Current spike: Spreading of current density that increases

I, can be described as a dynamo effect.

08 e t=473 t=1373
* The current density profile, I“ e

<J, |/B> shown at right, 020.5]
broadens when |, increases, -
whereas the flux distribution is

relatively unchanged. —0.5
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e Correlated fluctuations of flow velocity and magnetic field induce changes in
spatially averaged B.

* Averaged Faraday’s law with resistive-MHD E:

0
—(B)=-Vx[(nd) ~(V)x(B)+(E/ )]
MHD dynamo effect from astrophysics, RFP, and spheromak literature

is <Ef>=—<€fxl~)> :

B



dlp/dt becomes positive when power transferred by E;

becomes significant.

. Low-freguency Poynting theorem for <B>2 evolution is
9 (B)" 1
— + EYx(B)Y=—-(E)-(J
2 L ke () =)

* Right side includes fluctuation-induced —<Ef>'
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Plasma current spike occurs when m=2 Blue contours show <E;>.<J> <0, red is >0,
becomes dominant. overlaid with poloidal flux contours.



“Relaxation” of parallel current density is not as
uniform as it appears in plots of averaged field.
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Plot of <u,J,,/B>at t = 1373 17, of Plot of u,J|,/B over one poloidal
the new simulation, where < > slice t = 1373 7,
indicates toroidal average.




Wall forces: Forces with a thin-wall model should be

computed from stress on outer surface.

* Pustovitov’'s computation [Nucl. Fusion 55, 113032] is the natural one to apply
with thin-wall modeling.
* [t assumes that the wall and plasma form an electrically isolated system.
* Plasma inertial force is negligible on 7, timescale.

e (Cartesian components of Lorentz force over any object are F; = éj - [JxBdVol.
e With a thin wall, JAx =K as |J| — 00, but

Fj=ug' $as-[BB-18°/2|-¢; holds
e Splitinto integrals over inner and outer surfaces of the wall:

Fiy i aS [BB1822) 0 iy = S as[smo1m/2)e
Sin Sout
e Also, -F;, acts on plasma, hence F;,, — 0 for negligible plasma inertia.
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Our computations are consistent with Pustovitov’s

inferences.
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Boundary modeling: We are developing more realistic

modeling by considering magnetized sheath effects.

 The boundary conditions derived for reduced turbulence modeling in
[Loizu, et al., Phys Plasmas 19, 122307 (2012)] are based on conditions
at the magnetic pre-sheath entrance.

 We are adapting these conditions for full-MHD and two-fluid
computations.

* Parallel flow is the ion acoustic speed (at T, = 0)

<> Electrons are thermally insulated by the sheath (2-T modeling is
used)

 Tangential flow is from drifts, including sheath-E
 Wall electrical potential varies along the surface

e Parallel current is limited by what can be drawn (either ions or
electrons, depending on potential drop across sheath)

B



Magnetic presheath boundary conditions for flow, particle

density and temperatures have been implemented.

* Comparison of vertical component of flow from three nonlinear
axisymmetric VDE computations indicates the importance of boundary
conditions [Bunkers’ poster, Tuesday].
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e Saturation-current limits on J and tangential-V conditions are needed to
complete the Ot-order model.
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Conclusions & Discussion

* Visco-resistive MHD-based computations with NIMROD
reproduce important qualitative features:

* Relatively fast thermal quench

* Current spike and relatively slow decay (absent RE modeling)
* Spike occurs after TQ has begun, and dynamo effect is relevant.
* Wall-force check supports Pustovitov’s approach.

» Large 3D MHD computations of disruption are computationally
intensive.

» Improve algorithms and use of hardware.

» What reduced runaway model is best for practical CQ
computation?







Our computations use visco-resistive (full) MHD with

fluid closures.

 The following system is our base non-ideal single-fluid model.

a_n +V- (nV) =V- (DnVn - thvzn) particle continuity with
dt artificial diffusion
mn(ai+V°V)V= JxB-VQ2nT)-V-11 momentum density

4

0
L(—T+V-VT)=—nTV-V—V-q temperature evolution
y—1\0t
aB d ’ I & H -
—=—V><(7’]J—V><B) Faraday’s law & resistive
ot MHD Ohm’s
upJ=VxB Ampere’s law
V:-B=0 divergence constraint

 The NIMROD code (https://nimrodteam.org) is used to solve linear and
nonlinear versions of this system.
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Closure relations approximate plasma transport effects.

Magnetic diffusivity depends on temperature.
. n(T)= mlnlno (TO/T)3/2 ]
. rA/rn = nOrA/uoa =1x107°
Thermal conduction and viscous stress are anisotropic with fixed coefficients.
o d==n| (21 Xiso) DD+ Xisol| VT3 x1=0075, 35, =75x107°
+ M= v”mn(l— 3bb)b W-b-v, mnW; v =5x10"2, v;, =5x107
W=VV+vVv! —%IV V

Artificial particle diffusivities are intended to be small.
« D, =5x10"°, D, =1x1071"
NOTE: the equations used in this application have been normalized.

¢ TA—RO/Fopen—l o =1, ng—1
° a=0.8, R0—16

B



We surround the inner plasma-containing sub-domain with a

resistive wall and outer vacuum.

e Resistive diffusion through the wall is at an intermediate time-scale
between 7, and 7,

-3
* Vipall = Mwail / WoDxyqy =1x10
* The outer vacuum region is surrounded by a conducting wall.

* Small (10°7) magnetic field errorsinn =1 and n = 2 are applied
in nonlinear 3D computations.

/ external region

resistive wall and other bc’s




Robust asymmetric instability is a consequence of edge

profile changes from wall contact.

* Edge profile changes are most evident from the axisymmetric computation.
* Loss of edge RB, and pressure enhances edge current.
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Evolution of energy fluctuations in long-time and newer

simulations are consistent through early phase.

e Evolution of symmetric component of kinetic energy differs significantly,

however.
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Horizontal forcing in the 3D computation run to current

termination peaks when current decay rate increases.

* Plasma does not support net force, and plasma+wall is an electrically isolated
system [Pustovitov, Nucl Fusion 55, 113032].

* Computation of F; = M(}lgﬁds-[BB—!BZ/Z]-éj is over the outside of the

resistive wall.
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