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The two field components



The normal and tangential fields on a closed surface can be de-

composed into

Example: a toroidal surface
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The normal and tangential fields on a closed surface can be de-

composed into (1) the component sourced by enclosed currents,
and

Example: a toroidal surface
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The utility of decomposing the
fields



We have used this principle to decompose magnetics measure-

ments in DIII-D; e.g. a rotating tearing mode
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We have used this principle to decompose magnetics measure-

ments in DIII-D; e.g. an applied C-coil field in vacuum

Test 2: remove the C-coil field from a measurement of the vacuum

Figure is for illustration only. Some:
details may not be accurate.

Result:

e Successfully recovered a vacuum measurement to within 10%
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We expect this decomposition will find many applications

Ready for study on DIII-D:

1. Plasma response to C-coil fields: RWM feedback, mode entrainment
2. Measure MHD and driven wall currents separately: RWMs,
rotating/locking tearing modes

Near-future studies:

1. Axisymmetric and non-axisymmetric decompositions on well
diagnosed, circular cross-section devices
2. DIII-D l-coil response: ELM mitigation, RWM feedback, mode

entrainment
Further in the future:

1. Extend to all well diagnosed tokamaks, including ITER

2. VDEs and halo currents: independent plasma and wall measurements

3. Time-changing equilibrium measurements: Ohmic break-down
(ITER: 1 MA in wall, 100 kA in plasma), current ramp-up(-down)
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A simple model demonstrates
the fundamental principle



Given the field on some closed surface, how can we determine

whether the source is inside or outside?

Let’s begin with a simple situation: an infinite plane with a wire
running parallel to it.
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Given the field on some closed surface, how can we determine

whether the source is inside or outside?

e Let's begin with a simple situation: an infinite plane with a wire

running parallel to it.
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e Q: If we measure the normal
field everywhere on the plane,
can we distinguish which side of
the plane the wire is on?

e A: No, but it does indicate the
direction of the current.
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Given the field on some closed surface, how can we determine

whether the source is inside or outside?

e Let's begin with a simple situation: an infinite plane with a wire
running parallel to it.

e Q: Can we determine the side
the wire is on if we also include

the tangential field?
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Given the field on some closed surface, how can we determine

whether the source is inside or outside?

e Let's begin with a simple situation: an infinite plane with a wire
running parallel to it.

e Q: Can we determine the side
the wire is on if we also include
the tangential field?

e A: YES! The normal field
indicates current into the
screen, and to produce the
tangential field, the wire must
be on the right side.
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in our simple example, the normal and tangential

fields are sufficient to determine on which side the wire resides
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The simple model is not unique;

“The theory of the interaction of an external magnetic field with
a plasma is greatly simplified by a mathematical theorem that
defines a unique separation of a magnetic field into the part
produced by the currents in (the) region enclosed by a sur-
face and the part produced by currents in the region exter-
nal to the surface.”

[1] A.H. Boozer, Nucl. Fusion 55 025001 (2015)
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Derivation of the decomposition
in cylindrical geometry




A measurement surface and two adjacent virtual casings reduce

the 3D problem to a 2D cylindrical surface

e The magnetic probes fixed to the inner
vessel wall define a virtual surface S at
radius r = ny
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A measurement surface and two adjacent virtual casings reduce

the 3D problem to a 2D cylindrical surface

e The magnetic probes fixed to the inner
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radius r = ny

e On S, we measure the tangential and
normal fields everywhere

e Note the normal fields may be

measured outside the vessel
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A measurement surface and two adjacent virtual casings reduce

the 3D problem to a 2D cylindrical surface

e The magnetic probes fixed to the inner
vessel wall define a virtual surface S at
radius r = ny

e On S, we measure the tangential and
normal fields everywhere

e Note the normal fields may be

measured outside the vessel

e Using the virtual casing principle [2, 3], all external currents J* are
represented by surface currents 0%, on surface ST, and all internal
currents J' by surface currents og_ on surface S~

e These currents satisfy V-o05, =V - ais, =0
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Only vacuum fields are required, for which there are exact so-

lutions in cylindrical geometry

For a sheet current source at r = b, we solve V- B =0 in vacuum (i.e.

curl free) and find,

External Internal

r<b |r=5b r>b

Bnb) =8 x| B | 1|
Bo(rib) =T 2Be x| #Ed | o ||l
By(r; b) = 3; —iBje™  x ;’"E:ﬁ 0 |- 52522))

where x; = ml — n¢, ki = n/R, I(x) and Kn(x) are the modified Bessel
functions of the first and second kind, and the prime denotes the

derivative with respect to their argument.
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The measured field components provide two equations, and the

vacuum fields allow a reduction to two unknowns

The measured field B is a superposition of the internal field B! and the
external field B* A

B, = B!+ BF

By = Bj + B}

Considering a single set of field harmonics j, we can write
By = B}, + B;;
Bjo = Bjy + By

Finally, using the vacuum fields on the previous slide, we can rewrite the
normal component of the field in terms of one of the tangential
components of the field

Bjo = Bjs + Bjj
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each component of the internal and external fields is

written in terms of the total fields and geometric constants!

Internal fields: External fields:

rokj/mSI rokj/m>1 ,—ij/mgl I’okj/m>1
B, = ’YJ?(Bjr+i~Bj9 r}(Bjrii.BM) BX — ’Y}Bjr—i_Bje r}Bjr+i5jrp
Jr 0/ a7 4T jr A ]
B1 = w x _ M
'jo R i) s
Bjy = U5 B) | | px (I8 Bie)
j¢ rx+r} i i
where X = ki x _ | Im(kiro) | i roki i | Km(Kiro)
J m *J Iin(Kiro) J m 1 K7, (kiro)

R. Sweeney, E. Strait, (©2018, ITER Organization, IDM UID:WQT72Z, 20



it, the decomposition simplifies

The tokamak limit is given by,

) R
— <K —,
m n

i.e. the poloidal wavelength is much smaller than the toroidal wavelength

Internal fields: External fields:

5 B +i 2 x __ [m] =J
Bi =~ Tm1 & B =——F—
2
Bj,+B
Bi — ZimBirtBi = W
jo — 2 J

e These are the expressions used for the DIII-D applications

e Fields in the RFP require the full form on the previous slide
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fast rotating m/n = 2/1 tearing mode

(a) TM surface current (b) Ideal wall surface current (c) Resultant field

Internal fields at rp: External fields at ry: Measured field at ry:
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Present devices and outlook for
ITER




The cylindrical model is ready to be used on large aspect-ratio,

circular cross-section devices now

EXTRAP-T2R MST J-TEXT

- magnetic diagnostics? - needs more B, sensors
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This decomposition is expected to improve plasma control, par-

ticularly in ITER

ITER applications:

e Ohmic break-down where 1 MA wall currents and 100 kA plasma
currents are expected
e Decomposition will isolate the wall currents from the plasma currents
e Equilibrium reconstructions, particularly in the following cases:
e Plasma current ramp-up and ramp-down (i.e. remove vessel currents)
e Discharges with ELM mitigation by 3D fields

The ITER magnetic diagnostic includes:

e 24 x 6 (# poloidalx #toroidal) poloidal field probes

e Additional 207 poloidal field probes distributed outside divertor
e 20 x 6 and 9 x 9 arrays of saddle loops

e Additional 60 radial field sensors (local measurement)

Conclusion: the ITER magnetic diagnostic is well suited for this
decomposition
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Conclusion




1. Magpnetic fields can be decomposed on a closed-surface into the
components sourced by internal and external currents
2. In tokamaks, this often permits the separation of plasma
measurements from external sources which include:
e Vessel eddy currents
e Applied 3D fields
e Axisymmetric control fields
3. Expected disruption applications include:

e Rotating/locking MHD modes

e VDEs

e Halo currents

e Calculating torques between the plasma and the wall
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Summary (cont

1. The decomposition is solved exactly for the cylindrical, circular
cross-section vessel

e Work is ongoing to generalize to arbitrary vessel shapes

2. The cylindrical decomposition is demonstrated on two DIII-D
discharges with surprising success:
2.1 Separation of tearing mode fields from vessel eddy currents during
locking
2.2 Removal of C-coil fields to within 10% from a vacuum measurement
3. Plasma control, particularly in ITER, is expected to benefit from this
decomposition
e Control systems provided with independent measurements of plasma
and external currents
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Questions?




Backup slides: cylindrical current sheet

e Current sheet (white) carrying
m/n = 2/1 current

e Normal (radial) field is
continuous across the sheet

e The tangential (poloidal) field
inverts across the sheet

e The relationship between the

normal and tangential fields
determines which side of the 270°

current sheet the observer is on

6 (rad)
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