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The JOREK-STARWALL code
for halo current modelling
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The JOREK-STARWALL code for halo current modelling

WALL : POLOIDAL FIELD COIL. JOREK [Huysmans, NF2007]

« 3D non-linear MHD equations
AL « Toroidal geometry
« CI1 Finite elementsin poloidal plane
« Fourier harmonics for ¢ direction
- N ° Fullyimplicit fime evolution
17| JOREK's domain

-
es! I'f;r' (Plasma MHD equations)

STARWALL [P. Merkel, 2015]

STARWALL's domain , .
(Vacuum, coils and conductors i SO|V€S MCIXW@” S eC]UCITIOﬂS
Maxwell's equations + Ohm's law) y
. J and Ohm’'s law

« Green’s function method

* Thin wall approximation

Implicit coupling through B.C.s for B

[Hoelzl, 2012] = s
Bian = f(BnrY)
7 /"

Tangential field

SEPARATRIX

POLOIDAL FIELD COIL

Normal field  \yay currents
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The JOREK-STARWALL code for halo current modelling

EM boundary conditions

Reduced MHD, the E-field is

E = —&nggb — F()vpolu

. 5’t¢ has resistive wall free-boundary conditions

. ldeal wall BCs for poloidal E-field (u — O)

« Poloidal currents calculated from
force balance J «w B = Vp

Strong assumption. Poloidal
currents do not decay in the
wall (infinite conductivity in
the poloidal direction)
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2D VDE benchmark with
M3D-C1 and NIMROD
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2D VDE benchmark with M3D-C1 and NIMROD

VDE based on the NSTX #139536 discharge

4 b {4
a)‘|+5_l.ll T )1.5 CoT T D= ."..l Ll I
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Phase 1: Hot VDE until wall contact
_15 15 Phase 2: Artificially triggered TQ
0.5 10 |5 0.5 10 15 vyhen th(_e plasma becomes limited
R [m] R [m] (increasing « )

[I. Krebs, F.J. Artola, C. Sovinec 2019]
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2D VDE benchmark with M3D-C1 and NIMROD

halo current [kAlmz]

VDE based on the NSTX #139536 discharge
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[l. Krebs, F.J. Artola, C. Sovinec 2019]
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Understanding 2D halo currents
at ITER (15 MA/ 5.3T)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Halo current different regimes

« Hot VDE regime (Tw <K Tp)
L, ~ cte during VDE

. ldeal wall regime (Tp < Tyw)

axls f(l ) [D. Kiramov 2017 PoP]

7 = Current resistive decay time
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Parametric scan in CO time

Plasma resistivity is prescribed as a flux function
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Scan in CO time (scaling plasma resistivity profile)
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« Strong dependence on
CQ time to wall time ratio

(Tco/Tw)
« Maximum at 7¢q/7y, = ®©

Halo currents stabilize
VDE

* Minimum at 7o /7, > 0

Eddy currents stabilize
VDE
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Scan in CO time (scaling plasma resistivity profile)
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TCQ / T,y (Log-scale)

« Strong dependence on
CQ time to wall time ratio

(Tco/Tw)
« Maximum at 7¢q/7y, = ®©

Halo currents stabilize
VDE

* Minimum at 7o /7, > 0

Eddy currents stabilize
VDE
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Halo current different regimes

. Hot VDE regime (Tw < Tp)
» Cold halo (mn < 7w)
> Hot halo (7w < &)

. Ideal wall regime (7, < 7)

» Cold halo (7, < 1)
> Hot halo (Tp < Th)

also discussed in [Boozer PoP 2013]

7 = Current resistive decay time
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + cold halo (7h < Tw < Tp)

Currents are lost in wall and halo
faster than in plasma core

Currents are re-induced in plasma
edge (large current densities)

Big drop of edge safety factor
I, is largely conserved (g, «< a?)

Potential destabilization of
external kink modes
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7, < 75 ~ 7p)

« Toroidal current is transferred into
the halo region as the plasma
moves vertically

« Halo currents stabilize vertical
motion

« After stabilization, motion is given
by resistive decay of core + halos
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < 71, ~ 7p)
Halo resistivity scan

TCQ/TW =64
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< 10
=
- 5
481

NniNp
1.5 0.3 3.0
1.0 —— 9.0
0.5 - - - . : :
0 25 50 75 100 125 150

Time (ms)

F.J. Atola, 7' annual Theory and Simulation of Disruptions Workshop
© 2019, ITER Organization

IDM UID:
ITER D_YE5HWZ

Page 17



Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < 71, ~ )

Halo resistivity scan

15 _
Solid : Ip
Dashed: lhalo, ¢
o N S R s e =
— 5 - - “«-HH - '-——akhh\&
ma —
“‘\-\.HM_H
NwlMp
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Time (ms)
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Larger n

(faster halo
decay)

Larger halo

drive _ Smaller
Increase Regu|at|ng halos
in halos

mechanism for
Ihalo,qb

Less vertical

stabilization

I'h 410, depends weakly on n,
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < 71, ~ 7p)
Halo resistivity scan

HF (%)

TCQ/TW = 64

But 11,416 po1 depends strongly
on n;, through q,

Ihalo,cp

'Iil ~
alo,pol
da

Finally increasing the halo
resistivity gives larger poloidal
halo currents

50 75 100 125 150
Time (ms)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < 71, ~ )

Halo width scan

TCQ/TW = 064

— I'410,¢ also has a weak
/ — | dependence on the halo width
/,,,_ T halo width (%)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Hot VDE + hot halo (7w < 71, ~ )

Halo width scan

TCQ/TW = 064

halo width (%)
— 20 — 50 — 100

Solid : Ip
Dashed: Ipao, ¢
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I'h 410, Qlso has a weak

dependence on the halo width

Weak dependence through

Tp X Wy /My

But I},4,6 po: has a much

stronger dependence
through q,. More effective
at narrow halos.
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Ideal wall regime (7 < Tw)

Halo resistivity scan
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Halo currents also slow
down vertical motion

Iha10,4 is also not

linear in n,,
(self-regulating
mechanism)
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Understanding 2D halo currents at ITER (15 MA / 5.3T)

Ideal wall regime (7 < Tw)

Halo resistivity scan
10

Tco/Tw =0, Nu/np =1
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0.3 3.0

E a 1'0. — Q.Q | ///_\ da and Ihalo,pol
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The poloidalhalo
fraction (HF) is a factor
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hot VDEregime
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Prediction of the halo properties
and B.C.s
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Prediction of the halo properties and B.C.s

Currently working VDE model

» Temperature dependence for resistivity and
parallel conductivity

—3/2 5/2
n=mo (%) o = o (%)

. Ohmic heating term in energy eqguation
. Bohm’s boundary condition (v|| = cs)

. Sheath heat flux B.C.

~(k V1T + k) V) T) -n+nTv-n=ygnlc, ”ﬁénl
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Prediction of the halo properties and B.C.s

Missing ingredients of VDE model

. Neutrals, recycling and atomic processes (key for
density evolution, now n,(y))

 Impurity evolution and radiation

o Limit on ion saturation current (J < J.,;), (In progress)
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Prediction of the halo properties and B.C.s

Simulation setup

. Upward ITER VDE, 15 MA/53T

« Post-disruption equilibrium (g, = 0.05)

. Flat J-profile after helicity mixing (from DINA)

. No radiation (ohmic heating re-heats the plasma)

. Realistic Spitzer and Braginskii values for ny and x,

e K, =4m?%/s, Yeheatn =8, To=T;, T, =0.55
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Prediction of the halo width and B.C.s

At ~0.48s

iy Te_eV n_e20m-3
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Prediction of the halo width and B.C.s

n \
< 10 Solid : 1,
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Prediction of the halo width and B.C.s

Density scan (Zaxis=2.0m) ;!
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Conclusions and future work

JOREK / M3D-C1/ NIMROD benchmark: good agreement for 2D halo currents
2D VDEs ITER studies

» Hot VDE limit (7, < 7,,) largest halo fractions (HF,,x~50 %)

> Ideal wall limit (7, < 7,,) smallest halo fractions (HF 54 < 10 %)

> ITER mitigated disruptions (HF .5 ~ 10 — 25 %)

» Self-regulating mechanism for Iy, , Weak dependence on 7, < wy/ny

» Poloidal halo currents depend stronglyon q, (Ihaiopol = Ihalo,e /qa), Which
decreases at shorter 7,

» Maximum HF at (7,, < 75, < 7,,) with small halo widths

» Influence of initial [; and core resistivity profile?
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Conclusions and future work

Prediction of halo width and temperature

» Current VDE model including

= Realistic resistivities and conductivities

= Energy balance in the halo: sheath losses and ohmic heating
= Sheath B.C.s

= |mposed density n(y)

» Still missing
= Density evolution with neutrals and atomic physics
= Impurity radiation
= Limit on current density (ion saturation current)

> Results for hot VDEs show

= Large halo widths (for Jphi) at low temperature

IDM UID:

F.J. Atola, 7' annual Theory and Simulation of Disruptions Workshop TER D YESHWZ

© 2019, ITER Organization

Page 32



