Halo current studies with self-consistent MHD simulations for ITER 15 MA plasmas

F.J. Artola¹, G.T.A. Huijsmans², M. Lehnen¹, I. Krebs³, A. Loarte¹

1. ITER Organization, SCD, 13067 Saint Paul Lez Durance Cedex, France 2. CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

3. Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

email: javier.artola@iter.org

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

- The JOREK-STARWALL code for halo current modelling
- 2D VDE benchmark with M3D-C1 and NIMROD
- Understanding the 2D halo currents at ITER (15 MA/5.3T)
- Prediction of the halo properties and B.C.s
- Conclusions and future work

The JOREK-STARWALL code for halo current modelling

JOREK [Huysmans, NF2007]

- 3D non-linear MHD equations
- Toroidal geometry
- C1 Finite elements in poloidal plane
- Fourier harmonics for ϕ direction
- Fully implicit time evolution

STARWALL [P. Merkel, 2015]

- Solves Maxwell's equations and Ohm's law
- Green's function method
- Thin wall approximation

Implicit coupling through B.C.s for \vec{B} [Hoelzl, 2012] Tangential field Normal field Wall currents

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

EM boundary conditions

Reduced MHD, the E-field is

$$\mathbf{E} = -\partial_t \psi \nabla \phi - F_0 \nabla_{\mathrm{pol}} u$$

- $\partial_t \psi$ has resistive wall free-boundary conditions
- Ideal wall BCs for poloidal E-field $\,(u=0)\,$
- Poloidal currents calculated from

force balance $\mathbf{J} \times \mathbf{B} = \nabla p$

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

Page 5

2D VDE benchmark with M3D-C1 and NIMROD

2D VDE benchmark with M3D-C1 and NIMROD

VDE based on the NSTX #139536 discharge

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

2D VDE benchmark with M3D-C1 and NIMROD

VDE based on the NSTX #139536 discharge

Halo current different regimes

• Hot VDE regime $(\tau_w \ll \tau_p)$ I_p ~ cte during VDE

• Ideal wall regime $(au_p \ll au_w)$

 $Z_{axis} = f(I_p)$ [D. Kiramov 2017 PoP]

$\tau \equiv \mbox{Current}$ resistive decay time

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

Parametric scan in CQ time

Plasma resistivity is prescribed as a flux function

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

Page 11

Scan in CQ time (scaling plasma resistivity profile)

Scan in CQ time (scaling plasma resistivity profile)

Halo current different regimes

- Hot VDE regime $(\tau_w \ll \tau_p)$
 - > Cold halo $(\tau_h \ll \tau_w)$
 - > Hot halo $(\tau_w \ll \tau_h)$
- Ideal wall regime $(au_p \ll au_w)$
 - > Cold halo $(\tau_h \ll \tau_p)$
 - > Hot halo $(\tau_p \ll \tau_h)$

also discussed in [Boozer PoP 2013]

 $\tau \equiv \mbox{Current}$ resistive decay time

Hot VDE + cold halo $(\tau_h \ll \tau_w \ll \tau_p)$

- Currents are lost in wall and halo
 faster than in plasma core
- Currents are re-induced in plasma edge (large current densities) ——
- Big drop of edge safety factor I_p is largely conserved $(q_a \propto a^2)$
- Potential destabilization of external kink modes

- Toroidal current is transferred into the halo region as the plasma moves vertically
- Halo currents stabilize vertical motion
- After stabilization, motion is given by resistive decay of core + halos

But $I_{halo,pol}$ depends strongly on η_h through q_a

$$I_{halo,pol} \sim rac{I_{halo,\phi}}{q_a}$$

Finally increasing the halo resistivity gives larger poloidal halo currents

$I_{halo,\phi}$ also has a weak dependence on the halo width

Weak dependence through $au_h \propto w_h/\eta_h$

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

$I_{halo,\phi}$ also has a weak dependence on the halo width

Weak dependence through $au_h \propto w_h/\eta_h$

But $I_{halo,pol}$ has a much stronger dependence through q_a . More effective at narrow halos.

Ideal wall regime $(\tau_p \ll \tau_w)$

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

Ideal wall regime $(\tau_p \ll \tau_w)$

Currently working VDE model

• Temperature dependence for resistivity and parallel conductivity

$$\eta = \eta_0 \left(\frac{T}{T_0}\right)^{-3/2} \quad \kappa_{\parallel} = \kappa_{\parallel,0} \left(\frac{T}{T_0}\right)^{5/2}$$

- Ohmic heating term in energy equation
- Bohm's boundary condition $(\mathrm{v}_{||}=c_s)$
- Sheath heat flux B.C.

$$-(\kappa_{\perp}\nabla_{\perp}T + \kappa_{\parallel}\nabla_{\parallel}T) \cdot \mathbf{n} + nT\mathbf{v} \cdot \mathbf{n} = \gamma_{sh}nTc_{s}\frac{|\mathbf{B}\cdot\mathbf{n}|}{|B|}$$

Missing ingredients of VDE model

- Neutrals, recycling and atomic processes (key for density evolution, now $n_e(\psi)$)
- Impurity evolution and radiation
- Limit on ion saturation current ($J \leq J_{sat}$), (in progress)

Simulation setup

- Upward ITER VDE, 15 MA / 5.3 T
- Post-disruption equilibrium ($\beta_p = 0.05$)
- Flat J-profile after helicity mixing (from DINA)
- No radiation (ohmic heating re-heats the plasma)
- Realistic Spitzer and Braginskii values for η_0 and $\kappa_{\parallel 0}$

•
$$\kappa_{\perp} = 4 \text{ m}^2/\text{s}$$
, $\gamma_{sheath} = 8$, $T_e = T_i$, $\tau_w = 0.5 \text{ s}$

Prediction of the halo width and B.C.s

F.J. Artola, $7^{\mbox{th}}$ annual Theory and Simulation of Disruptions Workshop

IDM UID: ITER_D_YE5HWZ

Prediction of the halo width and B.C.s

F.J. Artola, 7th annual Theory and Simulation of Disruptions Workshop

Page 29

Prediction of the halo width and B.C.s

Conclusions and future work

JOREK / M3D-C1/ NIMROD benchmark: good agreement for 2D halo currents

2D VDEs ITER studies

- → Hot VDE limit ($\tau_w \ll \tau_p$) largest halo fractions (HF_{max}~50 %)
- → Ideal wall limit ($\tau_p \ll \tau_w$) smallest halo fractions (HF_{max} < 10 %)
- > ITER mitigated disruptions ($HF_{max} \sim 10 25 \%$)
- > Self-regulating mechanism for $I_{halo,\phi}$, weak dependence on $\tau_h \propto w_h/\eta_h$
- ▶ Poloidal halo currents depend strongly on q_a ($I_{halo,pol} = I_{halo,\phi}/q_a$), which decreases at shorter τ_h
- > Maximum HF at ($\tau_w \ll \tau_h < \tau_p$) with small halo widths

> Influence of initial l_i and core resistivity profile?

Conclusions and future work

Prediction of halo width and temperature

Current VDE model including

- Realistic resistivities and conductivities
- Energy balance in the halo: sheath losses and ohmic heating
- Sheath B.C.s
- Imposed density $n(\psi)$

Still missing

- Density evolution with neutrals and atomic physics
- Impurity radiation
- Limit on current density (ion saturation current)

Results for hot VDEs show

Large halo widths (for Jphi) at low temperature