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Vertical Displacement Events (VDEs) are sensitive to edge
plasma modeling.

Halo-plasma
modeling strongly
influences the
evolution of VDEs.

The halo
temperature
controls plasma
resistivity, and thus
affects vertical
movement.

The thermal
conduction
properties of this
region are
important for
accurate modeling.

Halo temperature sensitivity to the thermal heat
conduction ratio κ‖/κ⊥ and edge temperature in

M3D-C1 from I. Krebs, IAEA Poster, 2018.
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Previous work investigated sensitivity to varying the
flow-velocity boundary conditions.

The velocity boundary condition has been considered
previously.

Zakharov’s tokamak MHD implies that Ewall × B drift is
relevant.1

Strauss implemented this flow and saw minimal changes to the
force with respect to V = 0.2

However, Strauss noted that a Neumann velocity boundary
condition ∇(V · n̂) = 0 did increase the forces seen in
calculations.

1Zakharov, et. al., PoP 19(5), 2012.
2Strauss, PoP 21(3), 2014.
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We have considered more detailed modeling using MPSa

boundaries and Braginskii thermal conduction.

The velocity boundary condition is a Chodura-Bohm condition
directed along the magnetic field lines at cs .3

The electron temperature uses an insulating boundary
condition.

The thermal conduction is given by the Braginskii model in
low-temperature plasma regions.

3Chodura, Phys Fl, 25(9) (1982)
amagnetic presheath
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We have used forced VDE computations to investigate the
effects of various boundary conditions.

The equilibrium pressure with poloidal
flux contours for the central plasma
region is shown in the upper right.

We use two coupled domains for resistive
wall calculations.

The VDE is created by turning off a
divertor coil and letting the induced
currents in the resistive wall decay.

A Spitzer resistivity model

η(Te) = η0T
−3/2
e distinguishes high and

low conductivity plasma.
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The NIMROD equations are evolved for this axisymmetric
calculation.

∂n

∂t
+∇ · (nV) =∇ · (Dn∇n − Dh∇∇2n)

Continuity with
diffusive
numerical fluxes

mn

(
∂

∂t
+ V · ∇

)
V = J× B− ∇p −∇ ·

↔
Π flow

evolution

3

2
n

(
∂

∂t
+ V · ∇

)
Ts = −nTs∇ · V −∇ · qs

temperature
evolution

∂B

∂t
= −∇× (ηJ− V × B) + κB∇∇ · B

Faraday’s/Ohm’s
Law with numerical
error control

µ0J =∇× B low-ω Ampere’s law

↔
Π = −ρν

↔
W − ρν‖

↔
W‖ ,

↔
W = ∇V + (∇V)ᵀ − 2

3
1(∇ · V)
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The thermal diffusivity coefficients can either be fixed,
Braginskii, or “k2”.

For fixed coefficients, then qs = κ⊥,s ∇⊥Ts + κ‖,s ∇‖Ts with
the κ/n being constants in time and space.

For the Braginskii (left) and “k2” model4 (right), the
coefficients are specified through thermal diffusivities χ = κ/n

χB
‖,s =

Tsτs
ms

γ0,s

δ0,s

χB
⊥,s =

Tsτs
ms

γ1,sx
2
s + γ0,s

x4
s + δ1,sx2

s + δ0,s

τBe =
12π3/2√meT

3/2
e ε2

0√
2nee4 ln Λ

τBi =
12π3/2√miT

3/2
i ε2

0

nee4 ln Λ

xs = Ωsτs

χk2
‖,e =

Teτe
me

k̂‖,e χk2
‖,i =

Tiτi
mi

k̂‖,i

χk2
⊥,e =

Teτe
me

f (xe ,Zeff)

χk2
⊥,i =

Tiτi
mi

g(xi ,Zeff,
Ti

Te
)

τk2
i = τBi /

√
2

4Ji, PoP (2013)
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The T -dependent thermal diffusivity is cutoff at high
temperatures.

The thermal diffusivity parameters are cutoff from above at
around 10 eV.

Some are run with a lower bound on diffusivity so that they
would not decrease below 1 m2/s in a physically relevant case.
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A magnetic presheath model5 yields relations for boundary
conditions.

In the zeroth order (ρs/L→ 0)
approximation, with V the ion
velocity and MPE meaning the
magnetic presheath entrance value.

ŝ · VMPE = cs n̂ · b̂MPE, n̂ · ∇Te = 0
6 ⇒ n̂ · JMPE = encs sinα(1− exp[Λ− η])

The velocity boundary condition is
the well-known Chodura-Bohm
criterion3. Magnetic presheath

coordinate directions.
3Chodura, Phys Fl, 25(9), (1982)
5Loizu, et al., PoP 19(12), (2012)
6Cohen and Ryutov, PoP 2(6), (1995)
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Our most comprehensive model serves as a base case for
comparison.

The model uses the MPS boundary
conditions and the Braginskii thermal
conduction model.

The plasma decays away within 8τw, with a
resistive wall time of
τw = aµ0δw/ηw ≈ 1000τA.
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A visual aid helps chart the parameter space we have
considered.

Quantity Condition Name Shorthand Description

V E × B EB Vs = ŝ · E × B/B2

V Chodura-Bohm
and E×B CB+ V = ±csb + E × B/B2

Ts insulate I qs = 0
Ts Dirichlet D Ts = Tedge

n Dirichlet D n = nedge

χ fixed F χ⊥,‖ = constant
χ fixed T χ⊥,‖,i,e = constant
χ Braginskii B χ = χB

χ k2 k2 χ = χk2
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The comparison among different thermal diffusion models
will be presented.

Quantity Condition Name Shorthand Description

V E × B EB Vs = ŝ · E × B/B2

V Chodura-Bohm
and E×B CB+ V = ±csb + E × B/B2

Ts insulate I qs = 0
Ts Dirichlet D Ts = Tedge

n Dirichlet D n = nedge

χ fixed F χ⊥,‖ = constant
χ fixed T χ⊥,‖,i,e = constant
χ Braginskii B χ = χB

χ k2 k2 χ = χk2
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The models with large perpendicular thermal diffusion
show slower VDE decay of current and internal energy.

The current and internal energy (
∫
dV p/(γ − 1)) are shown for

different thermal conduction models.

The changes in κ⊥ affect the resistivity profile, broadening the halo
region, and leading to a slower decay in these forced VDEs.

16



The halo regions are broadened when increasing the
perpendicular thermal conduction.
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The comparison with velocity boundary conditions will be
presented next.

Quantity Condition Name Shorthand Description

V E × B EB Vs = ŝ · E × B/B2

V Chodura-Bohm
and E×B CB+ V = ±csb + E × B/B2

Ts insulate I qs = 0
Ts Dirichlet D Ts = Tedge

n Dirichlet D n = nedge

χ fixed F χ⊥,‖ = constant
χ fixed T χ⊥,‖,i,e = constant
χ Braginskii B χ = χB

χ k2 k2 χ = χk2
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The Chodura-Bohm velocity boundary condition shortens
the termination time.

The pure E× B drift condition decays much more slowly.
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The comparison of temperature boundary conditions will
now be presented.

Quantity Condition Name Shorthand Description

V E × B EB Vs = ŝ · E × B/B2

V Chodura-Bohm
and E×B CB+ V = ±csb + E × B/B2

Ts insulate I qs = 0
Ts Dirichlet D Ts = Tedge

n Dirichlet D n = nedge

χ fixed F χ⊥,‖ = constant
χ fixed T χ⊥,‖,i,e = constant
χ Braginskii B χ = χB

χ k2 k2 χ = χk2
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Applying insulating conditions lengthens the plasma
termination time.

The single-T insulating case lasts the longest and the
Dirichlet conditions with cold walls decay fastest.
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Vertical forces are also affected by these boundary
conditions.

The two
Chodura-Bohm cases
have clear termination
times where the force
peaks.

When extrapolated to
ITER, the equivalent
vertical force would
be on the order of
10 MN
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The distribution of the force over the wall is highly
concentrated at the plasma contact point.

The distribution of the
force along the wall
shows a large
concentration near the
plasma-wall contact
point.
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Conclusions

The edge boundary conditions and thermal conduction models
affect the halo region’s temperature and resistivity which
affects the VDE motion.

VDE sensitivity to boundary conditions and thermal
conduction models prompts us to apply more detailed
modeling.

The most comprehensive model using Braginskii thermal
conduction is more robust numerically, and does not require
tuning.
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Future Work

An ion saturation current condition is needed to complete the
MPS boundary conditions.

Radiation from impurities and the effects of neutrals will
affect edge conditions.

Non-axisymmetric cases should be run and the associated
horizontal and vertical forces calculated.
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The k2 model functions.
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