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Motivation: Automating classification of fusion 
plasma phenomena is complicated  
● Fusion plasmas exhibit a range of physics over different time and 

spatial scales
● Fusion experimental diagnostics are disparate, and increasingly 

high time resolution
● How can we automate identification of important plasma 

phenomena, for example oncoming disruptions?

Figure: [F. Poli, APS DPP 2017]
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Neural networks can be thought of as series of filters 
whose weights are “learned” to accomplish a task

● Fusion experiment/simulation have a wide variety of data 
analysis pipelines, use prior knowledge to get result  

● Neural networks (NN) have a number of layers of “weights” 
which can be viewed as filters (esp. Convolutional NN). But 
these filters are taught how to map given input through a 
complicated non-linear function to a given output.
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https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351


Deep learning enables end-to-end learning

● Traditional machine learning focused on hand developed 
features (e.g. shape in an image) to train shallow NN or other ML 
algorithms

● Deep learning (multiple layer NN) enable end-to-end learning, 
where higher dimensional features (e.g. pixels in an image) are 
input directly to the NN



Convolutional neural networks (CNN) 

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks

● CNN’s very successful in image 
classification, whereas Recurrent NN 
(e.g. LSTM) are often used for 
sequence classification (e.g. time 
series)

● But viewing NN as “filters”, no reason 
CNN can’t be applied to sequence 
machine learning also

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
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Challenges for RNN/LSTM on long sequences

● Typical, popular sequence NN like LSTM in principle are 
sensitive to infinite sequence length, due to memory cell 
technique

● However, in practice they tend to “forget” for phenomena with 
sequence length >1000 (approximate, depends on data)

● If characterising a sequence requires Tlong seconds, and 
short-scale phenomena of time-scale Tshort are important in the 
sequence, to use an LSTM requires 

● Various NN architectures enable learning on long sequences           
(CNN with dilated convolutions, attention, etc.)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Dilated convolutions enable efficient training on 
long sequences
● One difficulty using CNNs with 

causal filters is they require large 
filters or many layers to learn from 
long sequences 
○ Due to memory constraints, this 

becomes infeasible

● A seminal paper [*] showed using 
dilated convolutions (i.e. 
convolution w/ defined gaps) for 
time series modeling could increase 
the NN receptive field, reducing 
computational and memory 
requirements, and allowing training 
on long sequences

Normal convolution 

Dilated convolution 

[* A. Van Den Oord, et. al., WaveNET: A Generative Model for 
Raw Audio, 2016]



Temporal Convolutional Networks 

● Temporal Convolutional Network (TCN) architecture [*] 
combines causal, dilated convolutions with additional modern 
NN improvements (residual connections, weight normalization) 

● Several beneficial aspects compared to RNN’s:
○ Empirically TCN’s exhibit longer memory (i.e. better for long 

sequences)
○ Non-sequential, allows parallelized training and inference
○ Require less GPU memory for training

[* Bai, J.Z. Kolter, V. Koltun, http://arxiv.org/abs/1803.01271(2018)]

http://arxiv.org/abs/1803.01271


Outline

● Paradigm for deep learning

● Deep convolutional neural networks for long time 
series

● Initial results with ECEi for Disruption Prediction

● Future directions/Conclusions



Machine learning for Disruption Prediction

● Predicting (and understanding?) disruptions is a key challenge for 
tokamak operation, a lot of ML research has been applied 
[Vega Fus. Eng., 2013 , Rea FST 2018, Kates-Harbeck Nature 2019, D. Ferreira arxiv 2018]
○ Most ML methods use processed 0-D signals (e.g. line averaged 

density, locked mode amplitude, internal inductance, etc.)
○ Can we apply deep CNNs directly to diagnostic outputs for improved 

disruption prediction?
● Electron Cyclotron Emission imaging (ECEi) diagnostic has 

temporal & spatial sensitivity to disruption markers [Choi NF 2016]

ITER Physics Basis, Chapter 3 Nucl. Fusion 39 (1999) 2251–2389.
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DIII-D Electron Cyclotron Emission Imaging (ECEi)

● ECEi characteristics:
○ Measures electron temperature, Te
○ Time resolution (1 MHz) enabling measurement of δTe on turbulent 

timescales
○ Digitizer sufficient to measure entire DIII-D discharge (~O(5s))
○ 20 x 8 channels for spatial resolution
○ Some limitations due to signal cutoff above certain densities

● Sensitive to a number of plasma phenomena, e.g.
○ Sawteeth
○ Tearing modes
○ ELM’s

https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d

● Due to high temporal resolution 
(long time sequences), and 
spatial resolution, ECEi is a 
good candidate for applying 
end-to-end TCN

[B. Tobias et al., RSI (2010)]

https://sites.google.com/view/mmwave/research/advanced-mmw-imaging/ecei-on-diii-d


Dataset and computation

● Database of ~3000 shots (~50/50 non-disruptive/disruptive) with 
good ECEi data created from the Omfit DISRUPTIONS module 
shot list [E. Kolemen, et. al.]
○ “Good” data defined as all channels have SNR>3, avoid 

discharges where 2nd harmonic ECE cutoff
● ECEi data (~10 TB) transferred to Princeton TigerGPU cluster for 

distributed training (320 nVidia P100 GPU’s, 4 GPU’s per compute 
node)



Setup for training neural network

● Each time point is labeled as “disruptive” 
or “non”. For a disruptive shot, all time 
points 300ms or closer to disruption are 
labelled “disruptive” 
○ Times before 350ms have similar distribution 

to non-disruptive discharges [Rea FST 2018]
● Binary classification problem 

(disruptive/non-disruptive time slice)
● Overlapping subsequences of length 

>> receptive field are created, length 
mainly set by GPU memory constraints

Figure: Rea, FST, 2018
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Current, initial results using ECEi only

● Training on the subset of data, the loss does continually 
decrease, suggesting the network has the capacity necessary 
to capture and model disruptions with the ECEi data

● F1-score is ~91%, accuracy ~94%, on individual time slices. 
○ Additional regularization and/or training with larger dataset can 

help improve.
● Run on 16 GPU’s for 2 days.
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Future Possibilities

● Deep CNN architectures (e.g. TCN) can be applied to many 
fusion sequence diagnostics, e.g. magnetics, bolometry, 
synchrotron radiation, etc.
○ Tying together multiple diagnostics in a single or multiple neural 

networks can give enhanced possibilities, and sensitivity to the 
various types of disruptions

○ Can be used to create “automated logbook”, identify various 
phenomena. Especially important for longer pulses + more 
diagnostics + higher time resolution diagnostics

● Transfer learning can be explored for quickly re-training CNN 
on a different machine with few examples (use simulations 
for more examples, corrected by experiment? See Humbird 
2018 NIF work, and Bill Tang/Ge Dong ongoing work for MFE)



Future Possibilities (cont.)

● Interpretability techniques offer the possibility of “opening the 
black box”, identifying why the neural network makes a 
disruption prediction

● Physics informed learning: incorporating theoretical or 
simulation physics based conservation constraints [Raissi 
arxiv 2017]
○ Adding in constraints to the loss function to punish unphysical 

solutions, or incorporating prior knowledge into the neural 
network structure



Interpretability of neural networks

● Techniques exist to determine 
which parts of input were most 
important for a prediction (e.g. 
which pixels important for 
self-driving car algorithm, 
Bojarski arxiv 2017)

● This offers the promise of 
identifying the root cause of the 
predicted disruption, and may 
be able to give empirical 
feedback to theory/simulation 
for scenarios to further explore 
and explain

 



Conclusions
● Deep convolutional neural networks offer the promise of 

identifying multi-scale plasma phenomena, using end-to-end 
learning to work with diagnostic output directly
○ TCN architecture with causal, dilated convolutions allows 

predictions to be sensitive to longer time sequences while 
maintaining computational efficiency

● Initial work training a TCN on reduced ECEi datasets yields 
promising results for the ability of the TCN architecture to train a 
disruption predictor based on the ECEi data alone.

● Future work will compare the benefit of using full time resolution, 
including other diagnostics such as magnetics, tackling the 
issues related to transferring to new machines, and exploring 
interpretable algorithms to identify root cause of disruption 
predictions
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END PRESENTATION



● Starting with smaller subsets of data, working up.
● Data setup

○ Downsampled to 100 kHz
○ Sequences broken up into subsequences of 78,125 (781ms)
○ Undersampled subsequence training dataset so that 50/50 split in 

non-disruptive/disruptive subsequences (natural class imbalance 
~5% disruptive subsequences). 

○ Weighted loss function for 50/50 balancing of time slices classes
○ Full 20 x 8 channels used (but no 2D convolutions)
○ Data normalized with z-normalization (y - mean(y))/std(y)

Setup for training neural network

● TCN setup:
○ Receptive field ~30,000 i.e. 300ms (each 

time slice prediction based on receptive 
field)

○ 4 layers, dilation 10, kernel size 15, 
hidden nodes 80 per layer



Transfer learning

https://www.mathworks.com/help/deeplearning/examples/transfer-learning-using-alexnet.html;j
sessionid=b71bf04f90335a09f702b9feb5e7

https://www.mathworks.com/help/deeplearning/examples/transfer-learning-using-alexnet.html;jsessionid=b71bf04f90335a09f702b9feb5e7
https://www.mathworks.com/help/deeplearning/examples/transfer-learning-using-alexnet.html;jsessionid=b71bf04f90335a09f702b9feb5e7


Alex Krizhevsky, et. al., NIPS 2012

1st layers of CNN often exhibit basic filter 
charactersitics, e.g. edge or color filters



● Shot where disruption alarm 
triggered >> 300ms before 
disruption due to very similar 
behavior in that time region to just 
before the disruption (drop in Te, 
followed by recovery)

Target/prediction

ECEi data

Sequence ind

Target and 
prediction for 
disruptive shot



(previous results)

● F1-score is ~86%, accuracy ~91%, on individual time slices. 
○ Additional regularization and/or training with larger dataset can 

help improve.
● Run on 16 GPU’s for 2 days.


