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Runaway momentum dynamics has matured significantly over the past decade:

∂f
∂t

+ E‖
∂f
∂p‖︸ ︷︷ ︸

acceleration

+
∂

∂p
· (FRRf )︸ ︷︷ ︸

radiation-reaction

= Ce[f ]︸ ︷︷ ︸
collisions

+ Cknock-on[f ]︸ ︷︷ ︸
avalanche

+ Cbrems[f ]︸ ︷︷ ︸
bremsstrahlung

CODE is our Fokker-Planck tool
solving the kinetic equation for
f (t , p, θ).

http://ft.nephy.chalmers.se/

retools/

http://ft.nephy.chalmers.se/retools/
http://ft.nephy.chalmers.se/retools/
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Computation time dramatically increased⇒ can we revisit the traditional RE fluid?
jRE = −enRE〈v‖〉
nRE =

∫
dp fRE

〈v‖〉 = 1
nRE

∫
dp v‖fRE

djRE

dt
= −e〈v‖〉

dnRE

dt
− enRE

d〈v‖〉
dt
≡ γseed + jRE

[
Γava +

d
dt

ln〈v‖〉
]
.

The above are only definitions. Reduced kinetic models powerful in quasi-steady state

γseed(t ; E , Z , ...) ≈ γseed(E(t), Z (t), ...)

Γava(t ; E , Z , ...) ≈ Γava(E(t), Z (t), ...)

〈v‖〉(t ; E , Z , ...) ≈ 〈v‖〉(E(t), Z (t), ...)
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In quasi-steady state conditions:
Runaway fluid models are as accurate as the
kinetic model used to determine Γ and 〈v‖〉.

Open RE generation theory questions:

• How does gas injection affect RE generation?

• Is hot-tail generation amenable to an accurate
reduced description?

• When are reduced kinetic models applicable?
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Avalanche: Generalization of RP
calculation [L Hesslow et al., NF 59 (2019)
084004]
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Asymptotic matching, valid also when
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Mart́ın-Soĺıs et al.

Rosenbluth-Putvinski

Figure: Steady state avalanche growth rate
with nD = 1020 m−3, singly ionized argon
with nZ = nD at temperature T = 10 eV.

Atomic and kinetic model in [L Hesslow et
al., JPP 84 (2018) 905840605]
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Dreicer generation: Typically negligible in ITER, sometimes important for present-day
devices.

� Exponentially sensitive to many parameters
� Difficult to fit data to simple analytic formulas
� Neural networks trained on large database of kinetic simulations accounting for

cold impurities
� Significantly faster to evaluate than kinetic simulations

Figure: Comparison of
normalized Dreicer growth
rate γ̄ (arb. units).

(disclaimer: all conditions for
the validity of the model are
not strictly satisfied during
post-disruption conditions)
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GO: 1D fluid model for RE generation during disruptions (infinite aspect ratio)

Electric field and REs:
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Electron energy:
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Ion energies:
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P j
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∑

k
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2τjk
(Tk − Tj) (collisional energy transfer)

Prad = Pbrems +
∑

j

Pline,j , ADAS: Pline,j = nenjLj(ne,Te)

Charge states resolved:
dni

dt
= ne

[
Ii−1ni−1 − (Ii + Ri)ni + Ri+1ni+1

]
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Main limitations:

� No impurity transport ↔ static impurity density profiles

� Intact flux surfaces ↔ ad-hoc diffusion coefficients
(possible generalization: hyperresistivity and improved RE transport model)

� Steady-state growth rates↔ crude hot-tail model
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� Result from coupled GO+CODE
simulations: prescribed Te evolution
Te = Tfinal + (Tinitial − Tfinal)e−t/tTQ .

� Scenario based on ASDEX (Ip ≈ 800 kA,
Tinitial ≈ 10 keV and ne ≈ 3× 1019 m−3

on-axis, Tfinal = 5 eV, tTQ = 2 ms)
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How does RE generation during the CQ depend on injected gas quantities?
Te and ne constant (post-TQ), jRE � jtot and no radial transport:

jRE(r) = ecnseed(r)10Nava(r),

Nava ≈ ln(10)tCQ

∫ Einitial

Eeff
c

Γava(E)

E
dE ,

E(t , r) ≈ Einitial(r)e−t/tCQ .

(RP model: Nava ≈ 1016 in ITER)

Figure: Avalanche gain
during ITER-like CQ with
constant background
parameters.

In reality, the RE current
saturates when it approaches
the ohmic current in
magnitude!
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Test calculation with GO: non-negligible RE current and self-consistent E field.
nZ = nD = 1020 m−3; Te = 5 eV; nseed = 103 m−3.

� With Rosenbluth-Putvinski avalanche model: IRE ≈ 1 MA

� New growth rate with impurity corrections: IRE ≈ 7 MA (both for Ar and Ne)

Next steps:

– Self-consistent temperature evolution

– Physically-based seed generation (tritium & Compton short-term, hot-tail in pipeline)

– Modelling of past and future experiments

Note: challenging to validate our model on today’s experiments!
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� Simple RE fluid models provide insights into efficacy of material injection for RE
mitigation
I According to our atomic-physics model, injection exacerbates the RE problem in

ITER
I Ongoing: validate model with existing experiments

� EUROfusion pilot project: 6 participating institutes, 10 ppy total until the end of
2020 (extension possible).

� Open workshop (REM-8) on runaway modelling in Gothenburg (Sweden), January
13-17, 2020


