

Self-consistent modelling of electron runaway during tokamak disruptions, or: Can gas injection mitigate runaway electrons?

Ola Embréus Linnea Hesslow, Mathias Hoppe, Oskar Vallhagen, Lucas Unnerfelt, Tünde Fülöp

Runaway momentum dynamics has matured significantly over the past decade:

Computation time dramatically increased \Rightarrow can we revisit the traditional RE fluid?

 *j*RE = −*en*REh*v*^k i *n*RE = R d**p** *f*RE h*v*^k i = 1 *n*RE R d**p** *v*^k *f*RE d*j*RE d*t* = −*e*h*v*^k i d*n*RE d*t* − *en*RE dh*v*^k i d*t* [≡] ^γseed ⁺ *^j*RE Γava + d d*t* lnh*v*^k i .

The above are only definitions. Reduced kinetic models powerful in quasi-steady state

$$
\gamma_{\text{seed}}(t; E, Z, ...) \approx \gamma_{\text{seed}}(E(t), Z(t), ...)
$$
\n
$$
\Gamma_{\text{ava}}(t; E, Z, ...) \approx \Gamma_{\text{ava}}(E(t), Z(t), ...)
$$
\n
$$
\langle \mathsf{v}_{\parallel} \rangle (t; E, Z, ...) \approx \langle \mathsf{v}_{\parallel} \rangle (E(t), Z(t), ...)
$$

In quasi-steady state conditions:

Runaway fluid models are as accurate as the kinetic model used to determine Γ and $\langle \boldsymbol{\mathsf{v}}_{\parallel}\rangle.$

Open RE generation theory questions:

- How does gas injection affect RE generation?
- Is hot-tail generation amenable to an accurate reduced description?
- When are reduced kinetic models applicable?

In quasi-steady state conditions:

Runaway fluid models are as accurate as the kinetic model used to determine Γ and $\langle \nu_\parallel \rangle.$

Open RE generation theory questions:

- How does gas injection affect RE generation?
- Is hot-tail generation amenable to an accurate reduced description?
- When are reduced kinetic models applicable?

Avalanche: Generalization of RP calculation [L Hesslow *et al.*, NF **59** (2019) 084004]

$$
\begin{aligned} \Gamma_{\text{ava}} &= 4\pi n_{\text{e}}^{\text{tot}} r_0^2 c \frac{(m_{\text{e}}c)^2}{\rho_{\star}^2}, \\ \rho_{\star}^2 &= \frac{\sqrt{\nu_{\text{s}}(\rho_{\star})\nu_{\text{D}}(\rho_{\star})\rho_{\star}^6}/\gamma_{\star}^3}{eE}, \end{aligned}
$$

 ν_s and ν_p arbitrary slowing-down and deflection collision frequencies.

Asymptotic matching, valid also when *E* ∼ E_c^{eff} or $n_Z \ll n_D$:

$$
\Gamma_{\text{ava}} = \frac{e}{m_e c \ln \Lambda} \frac{n_e^{\text{tot}}}{n_e} \frac{E - E_c^{\text{eff}}}{\sqrt{4 + \bar{\nu}_s \bar{\nu}_D(\rho_\star)}} \quad (14)
$$

Figure: Steady state avalanche growth rate with $n_D=10^{20}\,\text{m}^{-3}$, singly ionized argon with $n_z = n_D$ at temperature $T = 10$ eV.

Atomic and kinetic model in [L Hesslow *et al.*, JPP **84** (2018) 905840605]

Dreicer generation: Typically negligible in ITER, sometimes important for present-day devices.

- Exponentially sensitive to many parameters
- Difficult to fit data to simple analytic formulas
- Neural networks trained on large database of kinetic simulations accounting for cold impurities
- Significantly faster to evaluate than kinetic simulations

(disclaimer: all conditions for the validity of the model are not strictly satisfied during post-disruption conditions)

GO: 1D fluid model for RE generation during disruptions (infinite aspect ratio)

Electric field and REs:
$$
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial E}{\partial r} \right) = \mu_0 \frac{\partial}{\partial t} (\sigma E + j_{\text{RE}})
$$

$$
\frac{\partial j_{\text{RE}}}{\partial t} = ec \left[\left(\frac{\partial n_{\text{RE}}}{\partial t} \right)^{\text{generation}} + \frac{1}{r} \frac{\partial}{\partial r} \left(r D_{\text{RE}} \frac{\partial n_{\text{RE}}}{\partial r} \right) \right]
$$

Electron energy:
$$
\frac{3}{2} \frac{\partial n_e T_e}{\partial t} = P_{\Omega} - P_{\text{rad}} - P_{\text{ionize}} + P_e^e + \frac{3n_e}{2r} \frac{\partial}{\partial r} \left(r \chi_e \frac{\partial T_e}{\partial r} \right)
$$

lon energies:
$$
\frac{3}{2} \frac{\partial n_i T_i}{\partial t} = P_c^i + \frac{3n_i}{2r} \frac{\partial}{\partial r} \left(r \chi_i \frac{\partial T_i}{\partial r} \right)
$$

$$
P_c^j = \sum_k \frac{3n_j}{2\tau_{jk}} (T_k - T_j) \quad \text{(collisional energy transfer)}
$$

$$
P_{\text{rad}} = P_{\text{brems}} + \sum_j P_{\text{line},j}, \text{ ADAS: } P_{\text{line},j} = n_e n_j L_j (n_e, T_e)
$$

Change states resolved:
$$
\frac{d n_i}{dt} = n_e \left[I_{i-1} n_{i-1} - (I_i + R_i) n_i + R_{i+1} n_{i+1} \right]
$$

Main limitations:

- No impurity transport \leftrightarrow static impurity density profiles
- Intact flux surfaces \leftrightarrow ad-hoc diffusion coefficients (possible generalization: hyperresistivity and improved RE transport model)
- Steady-state growth rates \leftrightarrow crude hot-tail model

How does RE generation during the CQ depend on injected gas quantities? T_e and n_e constant (post-TQ), $j_{\text{RF}} \ll j_{\text{tot}}$ and no radial transport:

$$
j_{\mathsf{RE}}(r) = \mathsf{e}cn_{\mathsf{seed}}(r)10^{N_{\mathsf{ava}}(r)},
$$

$$
N_{\mathsf{ava}} \approx \ln(10)t_{\mathsf{CO}} \int_{E_c^{\mathsf{eff}}}^{E_{\mathsf{initial}}}\frac{\Gamma_{\mathsf{ava}}(E)}{E} \mathsf{d}E,
$$

$$
E(t, r) \approx E_{\mathsf{initial}}(r) e^{-t/t_{\mathsf{CO}}}.
$$

(RP model: $N_{\text{avg}} \approx 10^{16}$ in ITER)

Figure: Avalanche gain during ITER-like CQ with constant background parameters.

In reality, the RE current saturates when it approaches the ohmic current in magnitude!

How does RE generation during the CQ depend on injected gas quantities? T_e and n_e constant (post-TQ), $j_{\text{RF}} \ll j_{\text{tot}}$ and no radial transport:

Test calculation with GO: non-negligible RE current and self-consistent *E* field. $n_{\mathsf{Z}} = n_{\mathsf{D}} = 10^{20} \,\mathsf{m}^{-3}; \quad \mathcal{T}_{e} = 5 \,\mathsf{eV}; \quad n_{\mathsf{seed}} = 10^{3} \,\mathsf{m}^{-3}.$

- With Rosenbluth-Putvinski avalanche model: $I_{BF} \approx 1$ MA
- New growth rate with impurity corrections: $I_{\text{RF}} \approx 7 \text{ MA}$ (both for Ar and Ne)

Next steps:

- Self-consistent temperature evolution
- Physically-based seed generation (tritium & Compton short-term, hot-tail in pipeline)
- Modelling of past and future experiments

Note: challenging to validate our model on today's experiments!

- Simple RE fluid models provide insights into efficacy of material injection for RE mitigation
	- **EXECT** *According to our atomic-physics model, injection exacerbates the RE problem in ITER*
	- \triangleright Ongoing: validate model with existing experiments
- EUROfusion pilot project: 6 participating institutes, 10 ppy total until the end of 2020 (extension possible).
- Open workshop (REM-8) on runaway modelling in Gothenburg (Sweden), January 13-17, 2020