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Reduced kinetic modelling 2/12

Runaway momentum dynamics has matured significantly over the past decade:
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Computation time dramatically increased = can we revisit the traditional RE fluid?
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The above are only definitions. Reduced kinetic models powerful in quasi-steady state
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In quasi-steady state conditions:
Runaway fluid models are as accurate as the
kinetic model used to determine I" and (v).

Open RE generation theory questions:
® How does gas injection affect RE generation?

® |s hot-tail generation amenable to an accurate
reduced description?

® When are reduced kinetic models applicable?
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Growth rates 5/12
Avalanche: Generalization of RP 5 . '
calculation [L Hesslow et al., NF 59 (2019 x  Kinetic simulations
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Asymptotic matching, valid also when
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Figure: Steady state avalanche growth rate
with np = 102 m=3, singly ionized argon
with nz = np at temperature T = 10eV.

Atomic and kinetic model in [L Hesslow et
al., JPP 84 (2018) 905840605]
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Dreicer generation: Typically negligible in ITER, sometimes important for present-day

devices.

B Exponentially sensitive to many parameters

B Difficult to fit data to simple analytic formulas

B Neural networks trained on large database of kinetic simulations accounting for

cold impurities

B Significantly faster to evaluate than kinetic simulations
Figure: Comparison of 107
normalized Dreicer growth 100 b
rate 7 (arb. units). .
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GO: 1D fluid model for RE generation during disruptions (infinite aspect ratio)
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Main limitations:
B No impurity transport < static impurity density profiles

B Intact flux surfaces < ad-hoc diffusion coefficients
(possible generalization: hyperresistivity and improved RE transport model)

B Steady-state growth rates < crude hot-tail model
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How does RE generation during the CQ depend on injected gas quantities?
Te and ne constant (post-TQ), jre < jiot and no radial transport:

JRe(r) = ecnseeq(r)10Me=(),

Einitial r E
Navazln(w)tcg/ Tava(E)

E
Eet E dE,

E(t, r) = Eniiat(r)e 0,

(RP model: Naya ~ 108 in ITER)
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How does RE generation during the CQ depend on injected gas quantities?
Te and ne constant (post-TQ), jre < jiot and no radial transport:
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(RP model: Naya ~ 108 in ITER)

Figure: Avalanche gain
during ITER-like CQ with
constant background
parameters.

In reality, the RE current
saturates when it approaches
the ohmic current in
magnitude!
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Test calculation with GO: non-negligible RE current and self-consistent E field.
nz=np=10°m=3; T,=5eV; nNgeeq=103m3.

B With Rosenbluth-Putvinski avalanche model: Irg ~ 1 MA

B New growth rate with impurity corrections:  Irg =~ 7 MA (both for Ar and Ne)

Next steps:

— Self-consistent temperature evolution

— Physically-based seed generation (tritium & Compton short-term, hot-tail in pipeline)
— Modelling of past and future experiments

Note: challenging to validate our model on today’s experiments!
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B Simple RE fluid models provide insights into efficacy of material injection for RE
mitigation
» According to our atomic-physics model, injection exacerbates the RE problem in
ITER
» Ongoing: validate model with existing experiments
B EUROfusion pilot project: 6 participating institutes, 10 ppy total until the end of
2020 (extension possible).

B Open workshop (REM-8) on runaway modelling in Gothenburg (Sweden), January
13-17, 2020



