Progress on applying machine
learning to disruption prediction

A summary of our group’s work at the
MIT Plasma Science & Fusion Center

PSIC

MIT Plasma Science & Fusion Center

R.S. Granetz, C. Rea, K. Montes,
J. Zhu, A. Tinguely

TSD workshop 2019
PPPL
2018/08/05-07

% J/
k‘; i .»

View from visible camera of disruption
on Alcator C-Mod.

Introduction

There are a number of Al methods that have been applied to disruption
prediction: neural networks (NN, RNN, CNN), support vector machines
(SVM), random forests (RF), generative topographic maps (GTM), etc.

— All these methods require extensive databases of disruption-relevant
signals, which we have compiled for C-Mod, DIlI-D, EAST, and KSTAR.

— We desire a low rate of missed disruptions and a low rate of false positives

Most of our group’s efforts have been on the training, optimization, and
testing of random forests algorithms for C-Mod, DIlI-D, and EAST for real

time use.
— We now have an RF predictor running in real time in the DIIlI-D plasma

control system, and will have the same on EAST soon.

We have also begun working with recurrent neural networks (RNN), and
comparing their performance to random forests.

A bit more information

Avoiding a disruption is preferable to having to mitigate a disruption.
This requires:

— a sufficiently long warning time to allow the plasma control system
to modify the discharge appropriately

— knowing which of the plasma input signals are most responsible for
the prediction of an impending disruption

This is known as “interpretability” or “feature contribution analysis™. (In
Al, the input signals are called “features”.)

= This is notoriously difficult for most Al methods
— We need to do it in real time

SQL databases established on different tokamaks

« Time series (OD) of 40-60 plasma parameters of thousands of
disrupted and non-disrupted discharges for different devices.

Device Discharges Samples/ Feature

C-Mod 5507 498,925
DIII-D 13245 3,018,096
Dili-D
N EAST 18751 1,518,082
KSTAR 4219 773,083

K5TAR

Alc tor
C-

C.Rea | IAEATM FDPVA 2019 | May 2019 4

Q: What is a ‘random forest’?
A: a collection of decision trees

Q: What is a ‘decision tree’ ?

Example of simple ‘training’ dataset

2 ®
® ®
e e
[® ® o @
1.5 e ® e —
® A d ®]
° ¢ ® o ° ® .
1 e L ®
e ©
e b g e
0.5 . ® ® |
® L J
* e e ®
Y 0 ® ._6 ® e *
L J [J o ®
@ [
e .’ e b g
-0.5 A e]
® L d ®
Ad e
1k L e e _
- e » o L e
o e L4 . e o®
| e ® L e _|
-1.5 ® % -
- e o L J ® L J
b g e
> I | I I I P!
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

— Just 2 ‘physics’ parameters: x1, x2
Our disruption datasets have 40+ parameters: By, dgs, Prags ---)

— 2 classes: red, blue (analogous to ‘stable’ or ‘close to disrupt’ classes)

Based on the training dataset, can we develop a set of rules about x, and x, that tell us when the data
will be red, and when the data will be blue?

If yes, then if we are given new values for x, and x,, we can apply those rules to predict whether the
new data will be red or blue.

1.5

0.5

-0.5

-1.5

Humans: excellent at image processing and spatial recognition!

Example of simple ‘training’ dataset

1.5

0.5

-0.5

-1.5

Humans: excellent at image processing and spatial recognition!

Example of simple ‘training’ dataset

Example of simple ‘training’ dataset

2 °
o L]
e i e
o ® b g ®
1.5 e L 2 e -
® A d Y]
@ ® g @ @ ® ®
1 . . ® 7
® ®
e A ®
0.5 . ® ® |
® o
® e ®
®
xt\l 0 - [] — ® L
[J L 4 ® o
® o
e .’ ® A
-0.5 L 3 e -
o ® e
A g e
1k L 4 o o |
[J » [J ® e
L L4 L]
e o ® ¢ *% °
-1.5- ® .. . - . —
® L] o - L]
o
> I | I I I P!
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x4,X,)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example of simple ‘training’ dataset

2 T &
® ®
P ® S
[® o @
1.5 e ® e —
® L d ® ®
° ¢ ® o ° ® .
1 . ° ®
e o
e b g e
0.5 . ® ® |
® o
o e o
o
xt\l 0 - [] — ® L 4
[J ® ® o
® o
e .’ e b g
-0.5 . L 3 LN o -
hd e
1k L e e _
[J o [J ® e
o L4 e
150 ¢ ¢ : .0 % ® -
1. .
- ® ® ® e o g ®
A e
> I | I I I P!
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x4,X,)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x,

| |
2 : : : -
 ® e . o :
| e ! b g | Y 1
1.5 : : ° : Y e :
| ® I 1 ® ® i
; I ¢ ® :. : A :. L
@
: g : : :
I I 1 e ®
' < : * e :
0.5 ° ! | ® | ® |
| @ | | |
| N | I ®
1 1 L 4 1 |l @
[] ® L
x> 0 4 : : :
B o] s e e
| e | | I
05 : S : \ -,
. : : o
. : O R P
i I 1 i
| o e e
1.5 1 1 1 ® o 1 @
: I | I ® P
| | ® ® L4 e 1 L4
I o I I 'Y | @
> :| | : ! : ! ! e | :
- —1:.5 -1 —q).5 0 : 0.5 1 1.5:
| | X | I
i i 1 I

Example of simple ‘training’ dataset

1

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x4,X,)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x,
Problem: at what value of x, should | divide the dataset?

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

If node 1 is not pure, then the instances should be split to decrease
impurity, and there are multiple possible attributes on which we can split.
For a numeric attribute, multiple split positions are possible] Among all,
we look for the split that minimizes impurity after the split|because we
want to generate the smallest tree. If the subsets aftter the split are closer
to pure, fewer splits (if any) will be needed afterward. Of course this is
locally optimal, and we have no guarantee of finding the smallest decision
tree.

Let us say at node m1, Nyp; of Ny take branch j; these are x' for which
the test fin (xY) returns outcome j. For a discrete attribute with n values,
there are n outcomes, and for a numeric attribute, there are two outcomes
(n = 2), in either case satisfyving Z?:l Nmj = Nm. N,‘,'nj of Ny ; belong to
class C;: [y NI, = Npj. Similarly, 37, N, = Ni,.

Then given that at node m1, the test returns outcome j, the estimate for
the probability of class C; is

Nin;

(9.7) P(Cilx,m, j) = pf,nj —

and the total impurity after the split is given as

, " Nmj = .
(9.8) T = — N p;nj log, p;'nj
J=1 "M j=1

In the case of a numeric attribute, to be able to calculate pinj using
equation 9.1, we also need to know wy,0 for that node. There are Ny, — 1
possible w0 between N;; data points: we do not need to test for all
{(possibly infinite) points; it is enough to test, for example, at halfway
between points. Note also that the best split is always between adjacent
points belonging to different classes. So we try them, and the best in
terms of purity is taken for the purity of the attribute. In the case of a
discrete attribute, no such iteration is necessary.

E. Alpaydin, “Introduction to Machine Learning”, 2"? edition, MIT Press

Total impurity

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

Test using parameter X,

1 T T I I T T I

0.9 m

o
o0
|
|

7
1

o o o
W NN 1)
| | |
| | |

o
N
|
|

0.1F -

O] 1 | |] 1 |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Branching test value

Total impurity

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

Test using parameter X,
1 T T T T T T T

© o o o o o
W B &) o ~l 5o}
| | | | | |

f/
| | | | |

o
\V]
|
|

0 ! ! ! ! ! ! !
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Branching test value

-0.536

Example of simple ‘training’ dataset

2 ®
@ ® ® e
e ¢ o e e
1.5 e e ® -
o L g o ®
[® e L J [g ®
1r - g ®
o o
® ® ®
051 - e TS _
® o
g e e ®
< 0 ® L] — ® ®
L J L 4 ® o
® o
S o e e
-0.5 ® e . . -
hd ®
| e ® ® |
1 ® » ® ® e
L L g e
] [® e A o
-1.5F ® .. . - . —
® ® o - L]
®
> ! | ! ! ! P
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x‘l

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x4,X,)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x,

Now we have two subdivided datasets:

2
® ®
® o
g ®
1.5 _
® o
@ ® ®
1 ® -
@
0.5 ® n
® o
@
e 0 &
o
o
. ®
-0.5 ® —
®
PR e i
- S
o o
'1 .5 B o —
o
> I | I I I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x,

This region of (x4, X,)-space only contains red data. We do not have to subdivide this region any more.

Now we have two subdivided datasets:

2 ®
®
g ®
1.5 e e e —
DS ®
P P ® .
1+ ° ® 7
e o
o ®
0.5 o S |
® ®
< 0) - ® ®
@ ® ® ® o
Y Y
-0.5 e . . -
Y
1 [J » ® [J ® ® |
L J - ®
°®
1.5 . ® ® -
L. ®
® L 4 L 4 ® ®
® Y
_2 | | | | | o |
-2 1.5 1 0.5 0 0.5 1 1.5 2

This region of (x4, X,)-space still contains both red and blue data. We need to subdivide this region
again.

This time, use x, to subdivide the data*
At what value of x, should | divide the dataset?

*The computer does not know which parameter is best to choose, especially when there are
many parameters. Most decision tree algorithms pick the parameter randomly.

Total impurity

Find the value of x, that minimizes the ‘total impurity’

Test using parameter X,

0.9

o
0o
|

o
~
|

o
(0]
|

O
9]
|

o
N
|

o
W
|

o
\V]
|

01

T T T T T T

\\\
™

] 1 | | . 4] 1

-1.5 -1 -0.5 0 0.5 1
Branching test value

0.344

2 T T T T T T @
®
g ®
1.5 o e e -
DS ®
P P ® .
1 [] ® -
e o
b d L
0344 °°f - - .
- ®
®
< 0 L — ® ® ®
[® ® ..
® Y
-0.5 ® e n
b °
®
1 L » ® L o e |
® ® * °®
1.5F . ® ®
®
e L 4 ® o ®
o e
2 1 1 1 1 1 o |
2 1.5 1 0.5 0 0.5 1 1.5 2

Divide dataset at x, value that minimizes the ‘total impurity’

Now we have two more subspaces of the dataset:

L L ~ 1 L I 1 L I
0.5 1 1.5 2 -2 -1.5 -1 -0.5 o} 0.5 1 1.5
X

Both of these regions of the (x4, X,)-space are ‘pure’. We do not need to subdivide any
more. We have learned the rules (parameters and values) that define red regions and
blue regions for our simple training set. For new values of (x,, x,), we can apply the
same rules to predict whether they will be red or blue.

Rules: x;>-0.536 AND x, > 0.344=——— blue
X, <-0.536 OR x,<0.344=——— red

We can illustrate this process using a tree-like structure

x,>-0.536

Yes
No
Cxmom) | ®
C1
Yes No
O @
C C

We can illustrate this process using a tree-like structure

X, >>-0.536 decision node

Yes

decision node @

branches

leaf

Yes

C

2

Neo
O
C
Neo !
- leaf
C

branches

leaf

We can illustrate this process using a tree-like structure

X, >>-0.536 decision node

Yes

No branches
decision node @ O leaf
CI
branches Yes No
leaf - O leaf
C, C,

Our simple training dataset only requires a small decision tree. What if we had
a more complicated dataset?

1.5

Example of a more complicated ‘training’ dataset

T T T T T T »
-
. ®
-
. P et .
o - e} e
o hd P e
L - -
- - - -
- -
® e
e ©
e b *
| - -
-
- *
- - e *
o - T [}
L 2 * o
L . - * - * @
= ® * ® e ® Y
- - -
g -
- - -
B - - L4 ™ Py
b -
- - - -
e e b
o - e
o L4 -
- - * e
1 .l 1 1 1 1 » |
-2 -1.5 -1 -0.5 (0] 0.5 1 1.5

Example of a more complicated ‘training’ dataset

Possible pattern recognition by a human

Example of a more complicated ‘training’ dataset

2 T T T T T T »
- - .‘ ®
- P e .
1.5+ - - -
o - - *®
- e - - - - Y
1+ . e -
- -
-
0.5 - - -
-
- -
O_ Y -
- - * @
0.5 - .. e
- . % -
g e
- e
-1F - - e - - Py
-
- - - ® -
e e - e
-1.5 P LN -
- - - - -
- o
_2 1 .l 1 1 1 1 F 3 1
-2 -1.5 -1 -0.5 (0] 0.5 1 1.5
X1

or maybe this

Example of a more complicated ‘training’ dataset

1 1 | 1 1 1
-2 -1.5 -1 -0.5 0O 0.5 1 1.5

But probably not this
Overfitting?

Example of a more complicated ‘training’ dataset

Training a decision tree

2 T T T T L 4
- - l
> e
. P et .
1.5+ - o e]
o ’. - *®
- L S - L‘
1_ . O ._
e o
- O L
0.5 | - *® —
=
- e
L 4 Y -
-
< Or . “eel” ® .
o L 4 ® @
]
0.5 - .' - n
— - - & ., ‘_
g -
-1+ * o ol - . - - .
- b 4 Y
- - * - o®
15 ® .‘ * _|
-
- - . - -
- - L
-2 1 *® 1 1 1 - |
-2 -1.5 -1 -0.5 (0] 0.5 1 1.5 2
X

A decision tree can always be fully “trained”. It may have many branches and many leaves.
Some leaves may contain only a small number of points. This could be an example of
“overfitting”.

Random Forests avoid overfitting

A fully grown decision tree (i.e. every branch ends in a pure leaf) is
subject to overfitting the training data.

This problem can be overcome by growing many independent,
uncorrelated decision trees, and averaging their test data predictions.
This collection of independent trees is called a Random Forest.

For our disruption prediction application, we selected the 10-12 most
relevant plasma parameters. We grow (i.e. train) 500 independent trees.
(It takes only 15-20 seconds to train using multiprocessing on 32 CPU
cores.)

graphical depiction of a single tree in a Random Forests

betap <= 0.713
gini = 0.4636
samples = 100.0%

qu_dep‘l'h = 3 value = [0.63, 0.37]

True \/
(" q95 <= 3.4767

gini = 0.4968
samples = 55.0%
value = [0.46, 0.54]
- /

" nG <=0.1846)
gini = 0.4025
samples = 31.6%
value = [0.72, 0.28]
o _J

nG <= 0.239

gini = 0.4993
samples = 4.2%
value = [0.48, 0.52]

ip_error_fraction <= -0.0212 95 <= 4.4331 rad_fraction <= 1.0471
gini = 0.4849 gini = 0.4996 gini = 0.4961
samples = 3.2% samples = 7.5% samples = 3.4%
value = [0.41, 0.59] value = [0.51, 0.49] value = [0.54, 0.46]

| ;N 1
O @M@ E @ E e @) G

fuIIy -grown free

o e g et
T RN DB X BB
Ll (e B! o

HEIGERIE (inm BidEn | o i v e MEERE T

uig i LU ERE o aER LR L]
[[" L] L]] ua | L] L) L Ll Wi BB S{ERINIEBIAGE: 1T 11 01
1= @l g w0 i L] ui s wm G i L] L] Eus lilnlﬁlln-unmrlu!
e i [[fiEaa Ham 8 " e] T
=

" i
[Ll
]

C.Rea | IAEATM FDPVA 2019 | May 2019

DPRF has run in DIlI-D PCS during 2018 experimental

campaign - 7.,... set at 350 ms before the dlsruphon

3.5
* Univariate analysison € EEE non disruptive
n_equal 1 . } feqt . ® 3.0 T 1 time until disrupt > 350 ms
normalised INPUT reatures: g) [time until disrupt = 350 ms
threshold for .E 2.0}
BAnS transition from sate to =, |
ip_error_ disruptive phase in a
fraction the plosmc: .g 1.0}
. E S
— parameter space. 2 0.5}
betap | oL IR b L T T e
N . %85 1.0 1.5 2.0
vloop « 9 features, mainly [
Wmhd dimensionless or - Binary classification:
Te width machine- ST Tt
I . I
parameters, ' nondisr I
L] L] I I
available in | * |
real-time. | |

Dii-b C.Rea | IAEATM FDPVA 2019 | May 2019 31

DPRF was trained on ~5300 DIII-D discharges, 16%

disruptive, from the 2014-2017 experimental campaigns

» Training only on flattop data; 1.28 175490
= No rampup or rampdown (disruptions). 50:75

—Not tailored on specific
disruption dynamics;
= Only causal filtering;
= Only unintentional disruptions;
= No hardware-related disruptions.

« Real-time inference on unseen shots: D 400/
° ° ° ='2'320'
—Offline training, then 20 0|

.) : : . £ E
translation to C for real-time infegration; g= 160}
80

—Each CPU cycle, the 9-features vector is
evaluated (250-300 ps)and inference
stored as disruptivity signal.

"sklearn-porter, https://github.com/nok/sklearn-porter, D. Morawiec.
C. Rea et al., submitted to Nuclear Fusion (2019).
Dili-D

i oo ety C.Rea | IAEATM FDPVA 2019 | May 2019 32

DPRF disruptivity for flattop disruption starts to rise

above 60% about 240ms before disruption event
175552

Which are the

drivers of high
disruptivity?

Din-n C.Rea | IAEATM FDPVA 2019 | May 2019 33

Disruption Prediction via Random Forests (DPRF') Algorithm

* Decision tree ensemble algorithm currently implemented for real-time use on DIII-D PCS
* Maps physics inputs .x at each time sample to a disruption probability y

* Predictions can be interpreted in real-time by examining the decision path taken by each new sample
X

\ j \ Prediction for 1 tree:
Vioop <= 0.6182 \ \ N u
LA D 0 f(x)=>b+ z contrib(xy)
value = [0.58, 0.42]
0, k=1

Te_width normal ed <= 0.7832 (Wmhd <= 269241.6875)
=0.3584 gini = 0.4409
sarnples 3.0% samples = 2.2%

value - [0.77, ozs] | value-[0.33,067] | @
betap <= 04079

ip_error_frac <= -0.0109
gini = 0.415
samples = 2.2%
value = [0.71, 0.29]

Prediction:0.06 ~ 0.04 (model bias, b) + 0.38 (gain, Vi,,,) - 0.19 (loss, rr_/a) - 0.17 (loss, q9s)

K. Montes — 3DSP Meeting, July 29, 2019 4

Disruption Prediction via Random Forests (DPRF') Algorithm

* Decision tree ensemble algorithm currently implemented for real-time use on DIII-D PCS

* Maps physics inputs .x at each time sample to a disruption probability y

* Predictions can be interpreted in real-time by examining the decision path taken by each new sample

X

\

Vloop <= 0.6182
gini = 0.4867

samples = 5.2%
value = [0.58, 0.42]

———

(Wmhd <= 269241.6875)
=0.3584 gini = 0.4409
sarnples 3.0%

value = [0.77, 023]

samples = 2.2%

Te_width normal ed <= 0.7832
| value-[0.33,0.67] |

ip_error_frac <= -0.0109
gini = 0.415
samples = 2.2%
value = [0.71, 0.29]

mm

Prediction for 1 tree:

f(x)=»b+ z contrib(xy)

\ ’/4/ Pred|ct|on functlon for aforest of J trees:

contrlb (x, k)

F(x) = Zb +7

Feature contributions

K. Montes — 3DSP Meeting, July 29t, 2019

35

DPRF disruptivity for flattop disruption starts to rise

above 60% about 240ms before disruption event

Ip [MA]

feature contributions

bui-b

175552

betap
n_equal_1 normalized

: ip_error_frac }' le
— i My 1y Lt 1) -M
— k
— :/9n5G J ¥ 1‘& 'Y } HbuJi
Vioop
—— Te_width_normalized
— Wmhd
0 1 2 3 a
time [s]

Disruptivity breakdown
via feature contributions
analysis:
Positive/negative
contributions are
extracted from the
decision paths traversed
by the data sample
along the individual
estimators (trees) in the
forest during inference.

C.Rea | IAEATM FDPVA 2019 | May 2019 36

Locked mode proxy, safety factor and Greenwald density

fraction contribute to most of the increasing disruptivit
175552 Increasing DPRF

1.6 1.0
disruptivity reflects input
1.2| 1% 5 features deviations.
-------- -lo.6 >

lo.sa s < Positive and negative
k 2 contributions push
; towards disruptive and
0.0 non disruptive
| operational spaces.

Ip [MA]
o
(o]

— n_equal_l_'normalized

non disruptive
A 4

feature contributions

Dii-b C.Rea | IAEATM FDPVA 2019 | May 2019 37

Increasing disruptivity, interpreted via feature contributions,

reflects plasma parameters deviations to disruptive scenario

175552

1.6 — 1.00
_ 1.2} 0.75 2
< >
Z 0.8 0.50 &
a ~
= 0.4 0.25 .0
©
0.0 =
0.24 16 o =
S o016 1453 actual time
s o= 4= fraces used for
008 |” <'E inference in real-
S 0.00 0 lnmny |] 0 < time
- === n_equal_1 normalized
§ 0.25 = nne
E 7 feature
S .00 <4— contributions of
= raw signals
T —-0.25 '
9 0 1 2 3 4
time [s]
Dili-D

i oo ety C.Rea | IAEATM FDPVA 2019 | May 2019 38

Increasing disruptivity, interpreted via feature contributions,

reflects plasma parameters deviations to disruptive scenario

36— | 175552 | 12 3 00] 2] 3]
_ 1.2 0.75 Fa LON
Y | B BT (LOQ) g ML fg DISRUPTION
A 95 ~ 3.2
= 04 10.25 _‘5"
0.0 . 4s 4.14s 4.37s
0.24 16 =
- . .
2 0.16 |agg ° Featurg contributions
S s |, 3@ analysis successfully
0 © s identifies chain of
0.00H ! : 0 € :
'§ === n_equal_1 normalized events |€Od|ng TO
5 disruption;
et
S
" « PCS implementation
2 | could enable real-time
& 0 1 2 3 4 scenario detection.

i oo ety C.Rea | IAEATM FDPVA 2019 | May 2019 39

EAST DPRF trained on ~7500 shots in the 2014-2017

campaigns - 7

ip error
fraction

Vloop

radiated
fraction

1i

kappa

q95

n/nG

Wmhd

Bp

0Z

Z

Te_width

n_equal 1
mode

Inter-shot disruptivity
predictions:

e DPRF frained on
GA clusters;

« Data preprocessed
on EAST servers once
availble;

- DPRF disruptivity
and features

conftributions available
~4-5 min after shot.

feature contributions

set at 100 ms before the disruption

450 81317 | | 0.5
300 0.4
>
{03%
150 =
102 2
w0
©
0 NO.1
. . 0.0
— Elongation
0.12 —— &7 (error)
0.08
0.04
0.00
0 1 2 3 4 5

Real-time implementation under way

C.Rea | IAEATM FDPVA 2019 | May 2019 40

Spatial profile information can be condensed into
‘profile width’ or ‘profile peaking’ signals

* T, width from ECE and/or Thomson scattering

* T, peaking from ECE and/or Thomson
scattering

® n, peaking from Thomson scattering
® Pressure peaking fromn_ x T,
®* P,.,4 Peaking from AXUV arrays

® divertor vs core P4

AXUV arrays on EAST

‘Peaking Factors’ Add Spatial Information to Inputs for Prediction

I, [MA .
» IMA] Lower Fan (Lower Single Null)
%1019 NN e //’ i \\ —Divertor Channels
DN N\ \ L\ [©0Flux Surfaces
10 \\ N\ \. \| X Magnetic Axis
E 5
0
0.5 *
2 2.2 2.4 2.6 2.8 3
4 T, corevs.all

————n, core_vs_all

Pp.i CVA

(MW]

2
2 3 P X-DIV
b4 5000
o2
g %,
- v .
B 1 F' Maon ‘- f Q
& ,JJW‘»\;,W \J LALAAY H.\‘ ,/V [7g"
A
0
0 A .
2 2.2 2.4 2.6 2.8 3
Pxgr
Pren
P()!mu'r
10t Prod
) \\
LA B
] “.‘Hu‘ U L
ATty i A) I
0] .]
2 2. 2 2. 4 2 6 2.8 3 0 .
Channel # Time [s]

Time [s]

K. Montes — 3DSP Meeting, July 29t, 2019 42

Can Feature Contributions Be Indicative of Disruption Precursors?

* Implemented post-mortem manual analysis i
of > 250 disruptions from DIII-D 2015/2016 First Precursors

* |dentified physics precursors in disruptive

event chains ® [ocked Mode

* Strong correlation between type of first ® RAD/UFO
precursor and experimental run % Unclear
* 19 of 21 MARFE disruptions during = MAREE

experiments studying detachment

* 74% of RAD/UFO disruptions during
metal ring campaign

® Heating off
®LOQ

® Operational
®[ON

® Other

* 79% of Locked Mode disruptions are
during runs studying LM avoidance, TM
control, and ELM control with RMPs

K. Montes — 3DSP Meeting, July 29t, 2019 43

Compared Manual Analysis with DPRF Predictions Using 13 Inputs

\ ' [~ Non-disruptive Shot

Split into 2 classes using manually
tagged tunstable

Excluded time slices ‘far from
disruption’ and ‘post quench’

Far From Disruption Post Quench

l]

' Disruption
' [_JUnstable Phase

t0 tdisrupt tf
Time [s]

0D

1D —

g—

—
g—

" rere | Descrion

n/ng
Winha
By
(Up = Iprog) /Iprog
?
Bj='/By (LM)
dos
Proa/Pinput
Vicop
P,,4 Core Peaking
P,,4 Divertor Peaking
T, peaking

n. peaking

Greenwald fraction
Stored energy
Poloidal beta
I, error fraction
Internal inductance
Locked mode proxy
Safety factor @ 95% flux
Radiated power fraction
Loop voltage [V]
Core vs all ratio
Divertor vs all ratio
Core vs all ratio

Core vs all ratio

K. Montes — 3DSP Meeting, July 29, 2019

True Positive Example: A clearly triggered LM disruption

» 2/1 rotating mode locks and disrupts
during a rotating TM control
experiment

* Contributions from LM signal and low
qoc trigger disruption warning alarm

* Disruptivity further increases due to
dropping n, /n¢

1.2
0.9
0.6
0.3
0.0
0.6

Ip [MA]

0.3
0.0
-0.3

Feature Contributions

0.40
0.32
0.24
0.16
0.08
0.00
1.0
0.8
0.6
0.4
E 0.2
0.0

ne/ng

=1/Bg)

(Bp

Shot #163034

|l

Time [s]

©c o0 oQ0oH
oN Pd O ® O

Disruptivity

K. Montes — 3DSP Meeting, July 29t, 2019

45

False Positive Example: Crash and Recovery?

DPRF fooled by a large crash and
radiative event near /~5 s

1D information contributes most to the
prediction

Soft landing & rampdown classifies this
shot as a false positive

Disruptivity

Ty

205

il

Radiated Power

N
o O

Channel #
8 —

4 4.2 4.4 4.6 4.8 5 5.2

46

For which non-disruptive discharges did we trigger an alarm?

False positive rate (FPR) ~7% Triggering Events of False Positive Alarms
~ /70

If minor disruptions and thermal
collapses/recoveries are excluded,
FPR reduces to 5%

Decoupling the pickup from the RMP
coils and the n=1 LM signal could
further reduce FPR to 3%

® Minor Disruptions ® Thermal collapse & recovery
® RMP? “ Non-disruptive LM

® Ambiguous ¥ signal fault

47

Random Forest vs Recurrent Neural Network

There are a number of reasons why Random Forest is an attractive Machine Learning method:

— The architecture of a Random Forests involve only a couple design parameters, which are
easily optimized

— Different features (plasma parameters), with vastly different numerical ranges, present no
Issues

— Data can be sampled at non-uniform rates

— For Random Forests, the degree to which each feature contributes to the classification
decision can be characterized in a straightforward deterministic way (“white box”)

HOWEVER:

RF classification is done on each time slice independently

® Information from previous classification decisions is not used in determining the
classification of the current time slice

® The classification of the current time slice is not used for classification decisions of future
time slices.

Neural Networks are another Al method for classification
problems

Many design parameters that can be difficult to determine:

® How many hidden layers?
® How many nodes in each hidden layer?
® 1000’s or millions of weights to determine/optimize
— Deep Learning; back-propagation;
® Difficult to determine the degree to which each feature contributes to the
classification decision (“black box")

But their complexity can incorporate features such as temporal history

Recurrent Neural Networks (RNN’s) have the capability to
include past classification information in current and
future decisions

LSTM Layer Architecture

This diagram illustrates the flow of a time series X with 2 features of length .5 through an LSTM layer. In this diagram, & denotes the output (also
known as the Aidden state) and ¢ denotes the cell state.

hy h, ha h, hg
4 r'y 4 4 'y
(F ~
LSTM Layer Einal
Initial »co—P| LSTM > LSTM > isTM [Ce—1—¥ 1sTM [P < —» sTm > d d
State »hy——> Unit »| Unit »| Unit | S2as he s—P] Unit L h, 255 —»| Unit > Up ate
1 [1 | ¥ State
~ —
p——

Feature
. . 3
Dimension
D
X

Time Steps

Our initial experiences working with RNN’s

® Data had to be re-sampled to be on a uniform timebase

¢ All plasma input parameter numerical values must be normalized and shifted to have
similar numerical ranges

® Training and optimization takes several days, as opposed to a few minutes for RF’s

¢ Determining feature importance is very cumbersome, and very slow compared to RF’s

— Each input parameter’s value is varied by a small amount, one parameter at a
time. The observed changes in the output are used to determine the Jacobian for
each parameter, for each time slice. The sum of each parameter’s Jacobians over

all time slices gives a relative feature importance.

But, using an ensemble of 32 RNN's, our initial finding is that they perform better
than RF’s, at least on C-Mod data (which is the most difficult of our set of

tokamaks to predict accurately)

Comparison of RNN and Random Forests
performance on C-Mod data

100 B

RNN performance on the test dataset, TNR=0.937 F1 optimum

N— | TPR~T5% @1ms, ~25%
80l T | @20ms
S\ : UG FPR’VZ%

| NO ’B‘I'ack V'\/inldcl)v‘v"ll'hxreshqldl -

(@)}
o

o
o

umulative TPR

32 RNN Ensemble
TPR~94% @1ms, ~55%
@20ms
FPR~6%

S
o

accumulated fraction of
disruptions detected (%)

‘ L L C . ' ' R
0 —— : —_— : —_— s
107 107 107" 10 : i s

Time until disrupt/s E% ggt:mam

A1.0_3 — A.lAO_z ‘ 101
warning time [s]

Some next steps

Install our trained RF in the EAST PCS and run in real time. Possibly use the
output to fire MGl valve

Upgrade our RF predictor that’s currently running in the DIII-D PCS to determine
feature importance in real time

Develop RNN’s for DIlI-D and EAST, and compare to RF’s

After training disruption prediction algorithms on one tokamak’s database, try
applying it to the other tokamaks’ data. The long-term goal is to determine if a
universal disruption warning algorithm can be realized using Al methods.

