
Progress on applying machine
learning to disruption prediction

A summary of our group’s work at the
MIT Plasma Science & Fusion Center

R.S. Granetz, C. Rea, K. Montes,
J. Zhu, A. Tinguely

TSD	workshop	2019	
PPPL	

2018/08/05-07	

View from visible camera of disruption
on Alcator C-Mod.

Introduction

There are a number of AI methods that have been applied to disruption
prediction: neural networks (NN, RNN, CNN), support vector machines
(SVM), random forests (RF), generative topographic maps (GTM), etc.
‒ All these methods require extensive databases of disruption-relevant

signals, which we have compiled for C-Mod, DIII-D, EAST, and KSTAR.
‒ We desire a low rate of missed disruptions and a low rate of false positives

Most of our group’s efforts have been on the training, optimization, and
testing of random forests algorithms for C-Mod, DIII-D, and EAST for real
time use.
‒ We now have an RF predictor running in real time in the DIII-D plasma

control system, and will have the same on EAST soon.

We have also begun working with recurrent neural networks (RNN), and
comparing their performance to random forests.

A bit more information

Avoiding a disruption is preferable to having to mitigate a disruption.
This requires:
‒ a sufficiently long warning time to allow the plasma control system

to modify the discharge appropriately
‒ knowing which of the plasma input signals are most responsible for

the prediction of an impending disruption

This is known as “interpretability” or “feature contribution analysis”. (In
AI, the input signals are called “features”.)
‒ This is notoriously difficult for most AI methods
‒ We need to do it in real time

C. Rea | IAEA TM FDPVA 2019 | May 2019

SQL databases established on different tokamaks

•  Time series (0D) of 40-60 plasma parameters of thousands of
disrupted and non-disrupted discharges for different devices.

Device Discharges Samples/ Feature

C-Mod 5507 498,925

DIII-D 13245 3,018,096

EAST 18751 1,518,082

KSTAR 4219 773,083

4

Q: What is a ‘random forest’?
A: a collection of decision trees

Q: What is a ‘decision tree’ ?

Example of simple ‘training’ dataset

–  Just 2 ‘physics’ parameters: x1, x2
–  (Our disruption datasets have 40+ parameters: βN, q95, Prad, …)
–  2 classes: red, blue (analogous to ‘stable’ or ‘close to disrupt’ classes)

Based on the training dataset, can we develop a set of rules about x1 and x2 that tell us when the data
will be red, and when the data will be blue?
If yes, then if we are given new values for x1 and x2, we can apply those rules to predict whether the
new data will be red or blue.

Example of simple ‘training’ dataset

Humans: excellent at image processing and spatial recognition!

Example of simple ‘training’ dataset

Humans: excellent at image processing and spatial recognition!

Example of simple ‘training’ dataset

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example of simple ‘training’ dataset

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x1

Example of simple ‘training’ dataset

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x1
Problem: at what value of x1 should I divide the dataset?

E. Alpaydin, “Introduction to Machine Learning”, 2nd edition, MIT Press

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

There is a mathematical way to determine the best value to divide the dataset:
Minimize the ‘total impurity’

-0.536

Example of simple ‘training’ dataset

Computers: quick and accurate at math, but terrible at spatial recognition!

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data

Example: start with x1
Divide dataset at x1 value that minimizes the ‘total impurity’

-0.536

Now we have two subdivided datasets:

This region of (x1, x2)-space only contains red data. We do not have to subdivide this region any more.

Now we have two subdivided datasets:

This region of (x1, x2)-space still contains both red and blue data. We need to subdivide this region
again.
This time, use x2 to subdivide the data*
At what value of x2 should I divide the dataset?

*The computer does not know which parameter is best to choose, especially when there are
many parameters. Most decision tree algorithms pick the parameter randomly.

Find the value of x2 that minimizes the ‘total impurity’

0.344

Divide dataset at x2 value that minimizes the ‘total impurity’

0.344

Rules: x1 > -0.536 AND x2 > 0.344 blue
 x1 < -0.536 OR x2 < 0.344 red

Now we have two more subspaces of the dataset:

Both of these regions of the (x1, x2)-space are ‘pure’. We do not need to subdivide any
more. We have learned the rules (parameters and values) that define red regions and
blue regions for our simple training set. For new values of (x1, x2), we can apply the
same rules to predict whether they will be red or blue.

We can illustrate this process using a tree-like structure

0.344

-0.536

We can illustrate this process using a tree-like structure

decision node

decision node

branches

branches

leaf

leaf leaf

0.344

-0.536

We can illustrate this process using a tree-like structure

decision node

decision node

branches

branches

leaf

leaf leaf

Our simple training dataset only requires a small decision tree. What if we had
a more complicated dataset?

0.344

-0.536

Example of a more complicated ‘training’ dataset

Example of a more complicated ‘training’ dataset

Possible pattern recognition by a human

Example of a more complicated ‘training’ dataset

or maybe this

Example of a more complicated ‘training’ dataset

But probably not this

Overfitting?

A decision tree can always be fully “trained”. It may have many branches and many leaves.
Some leaves may contain only a small number of points. This could be an example of
“overfitting”.

Example of a more complicated ‘training’ dataset

Random Forests avoid overfitting

A fully grown decision tree (i.e. every branch ends in a pure leaf) is
subject to overfitting the training data.

This problem can be overcome by growing many independent,
uncorrelated decision trees, and averaging their test data predictions.
This collection of independent trees is called a Random Forest.

For our disruption prediction application, we selected the 10-12 most
relevant plasma parameters. We grow (i.e. train) 500 independent trees.
(It takes only 15-20 seconds to train using multiprocessing on 32 CPU
cores.)

C. Rea | IAEA TM FDPVA 2019 | May 2019

graphical depiction of a single tree in a Random Forests

max_depth = 3

fully-grown tree

C. Rea | IAEA TM FDPVA 2019 | May 2019

DPRF has run in DIII-D PCS during 2018 experimental
campaign - 𝜏𝑐𝑙𝑎𝑠𝑠 set at 350 ms before the disruption

im
p

o
rt

a
nc

e
 n_equal_1

normalised

q95

n/nG

ip_error_
fraction

li

betap

Vloop

Wmhd

Te_width
normalised

far
from
disr

close
to disr

+

non disruptive disruptive
 non disr

far from
disr

•  Binary classification:

close
to disr

hi
st

og
ra

m

31

C. Rea | IAEA TM FDPVA 2019 | May 2019

DPRF was trained on ~5300 DIII-D discharges, 16%
disruptive, from the 2014-2017 experimental campaigns

•  Training only on flattop data;
§  No rampup or rampdown (disruptions).

– Not tailored on specific
disruption dynamics;
§  Only causal filtering;
§  Only unintentional disruptions;
§  No hardware-related disruptions.

•  Real-time inference on unseen shots:
– Offline training, then

translation to C* for real-time integration;
– Each CPU cycle, the 9-features vector is

evaluated (250-300 µs)and inference
stored as disruptivity signal.

*sklearn-porter, https://github.com/nok/sklearn-porter, D. Morawiec.
C. Rea et al., submitted to Nuclear Fusion (2019).

32

C. Rea | IAEA TM FDPVA 2019 | May 2019

DPRF disruptivity for flattop disruption starts to rise
above 60% about 240ms before disruption event

Which are the
drivers of high
disruptivity?

33

34	

Disruption Prediction via Random Forests (DPRF) Algorithm

•  Decision	tree	ensemble	algorithm	currently	implemented	for	real-time	use	on	DIII-D	PCS	
•  Maps	physics	inputs	​𝑥 	at	each	time	sample	to	a	disruption	probability	𝑦		
•  Predictions	can	be	interpreted	in	real-time	by	examining	the	decision	path	taken	by	each	new	sample	

𝟎.𝟎𝟔	𝟎.𝟐𝟗	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	

35	

Disruption Prediction via Random Forests (DPRF) Algorithm

•  Decision	tree	ensemble	algorithm	currently	implemented	for	real-time	use	on	DIII-D	PCS	
•  Maps	physics	inputs	​𝑥 	at	each	time	sample	to	a	disruption	probability	𝑦		
•  Predictions	can	be	interpreted	in	real-time	by	examining	the	decision	path	taken	by	each	new	sample	

𝟎.𝟎𝟔	𝟎.𝟐𝟗	

Feature	contributions	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	

C. Rea | IAEA TM FDPVA 2019 | May 2019

DPRF disruptivity for flattop disruption starts to rise
above 60% about 240ms before disruption event

•  Disruptivity breakdown
via feature contributions
analysis:
Positive/negative
contributions are
extracted from the
decision paths traversed
by the data sample
along the individual
estimators (trees) in the
forest during inference.

36

C. Rea | IAEA TM FDPVA 2019 | May 2019

Locked mode proxy, safety factor and Greenwald density
fraction contribute to most of the increasing disruptivity

•  Increasing DPRF
disruptivity reflects input
features deviations.

•  Positive and negative
contributions push
towards disruptive and
non disruptive
operational spaces.

non disruptive

disruptive

37

C. Rea | IAEA TM FDPVA 2019 | May 2019

actual time
traces used for
inference in real-
time

feature
contributions of
raw signals

38

Increasing disruptivity, interpreted via feature contributions,
reflects plasma parameters deviations to disruptive scenario

C. Rea | IAEA TM FDPVA 2019 | May 2019

Increasing disruptivity, interpreted via feature contributions,
reflects plasma parameters deviations to disruptive scenario

 1-2 3

LON
(LOQ)
q95 ~ 3.2

ML DISRUPTION

 [1] [2] [3]

 4s 4.14s 4.37s

•  Feature contributions
analysis successfully
identifies chain of
events leading to
disruption;

•  PCS implementation
could enable real-time
scenario detection.

39

C. Rea | IAEA TM FDPVA 2019 | May 2019

EAST DPRF trained on ~7500 shots in the 2014-2017
campaigns - 𝜏𝑐𝑙𝑎𝑠𝑠 set at 100 ms before the disruption

im
p

o
rt

a
nc

e
 ip_error

fraction

Vloop

radiated  
fraction

li

kappa

q95

n/nG

Wmhd

𝜷p

ẟZ

Z

Te_width

n_equal_1
mode

Inter-shot disruptivity
predictions:

•  DPRF trained on
GA clusters;

•  Data preprocessed
on EAST servers once
availble;

•  DPRF disruptivity
and features
contributions available
~4-5 min after shot.

Real-time implementation under way

40

Spatial profile information can be condensed into
‘profile width’ or ‘profile peaking’ signals

AXUV	arrays	on	EAST	

•  Te width from ECE and/or Thomson scattering

•  Te peaking from ECE and/or Thomson
scattering

•  ne peaking from Thomson scattering

•  Pressure peaking from ne x Te

•  Prad peaking from AXUV arrays

•  divertor vs core Prad

1	

7	

15	

24	

42	

‘Peaking Factors’ Add Spatial Information to Inputs for Prediction

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	

132	

54	

23	

21	

18	
6	5	

2	 2	First	Precursors	

Locked	Mode	
RAD/UFO	
Unclear	
MARFE	
Heating	off	
LOQ	
Operational	
LON	
Other	

43	

Can Feature Contributions Be Indicative of Disruption Precursors?

•  Implemented	post-mortem	manual	analysis	
of	>	250	disruptions	from	DIII-D	2015/2016	

•  Identified	physics	precursors	in	disruptive	
event	chains	

•  Strong	correlation	between	type	of	first	
precursor	and	experimental	run	

•  19	of	21	MARFE	disruptions	during	
experiments	studying	detachment	

•  74%	of	RAD/UFO	disruptions	during	
metal	ring	campaign	

•  79%	of	Locked	Mode	disruptions	are	
during	runs	studying	LM	avoidance,	TM	
control,	and	ELM	control	with	RMPs	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	

45	

True Positive Example: A clearly triggered LM disruption

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	

46	

False Positive Example: Crash and Recovery?

•  DPRF	fooled	by	a	large	crash	and	
radiative	event	near	𝑡∼5 𝑠	

•  1D	information	contributes	most	to	the	
prediction	

•  Soft	landing	&	rampdown	classifies	this	
shot	as	a	false	positive	

Temperatur
e	

Density	

Radiated	Power	

47	

For which non-disruptive discharges did we trigger an alarm?

3	

1	

3	
3	

1	

2	

Triggering	Events	of	False	Positive	Alarms	

Minor	Disruptions	 Thermal	collapse	&	recovery	

RMP?	 Non-disruptive	LM	

Ambiguous	 signal	fault	

•  False	positive	rate	(FPR)	≈7%	
•  If	minor	disruptions	and	thermal	

collapses/recoveries	are	excluded,	
FPR	reduces	to	≈5%	

•  Decoupling	the	pickup	from	the	RMP	
coils	and	the	n=1	LM	signal	could	
further	reduce	FPR	to	≈3%	

Random Forest vs Recurrent Neural Network

There are a number of reasons why Random Forest is an attractive Machine Learning method:

–  The architecture of a Random Forests involve only a couple design parameters, which are
easily optimized

–  Different features (plasma parameters), with vastly different numerical ranges, present no
issues

–  Data can be sampled at non-uniform rates
–  For Random Forests, the degree to which each feature contributes to the classification

decision can be characterized in a straightforward deterministic way (“white box”)

HOWEVER:

RF classification is done on each time slice independently

•  Information from previous classification decisions is not used in determining the
classification of the current time slice

•  The classification of the current time slice is not used for classification decisions of future
time slices.

Neural Networks are another AI method for classification
problems

Many design parameters that can be difficult to determine:
•  How many hidden layers?
•  How many nodes in each hidden layer?
•  1000’s or millions of weights to determine/optimize

– Deep Learning; back-propagation;
•  Difficult to determine the degree to which each feature contributes to the

classification decision (“black box”)

But their complexity can incorporate features such as temporal history

Recurrent Neural Networks (RNN’s) have the capability to
include past classification information in current and

future decisions

Our initial experiences working with RNN’s

•  Data had to be re-sampled to be on a uniform timebase

•  All plasma input parameter numerical values must be normalized and shifted to have
similar numerical ranges

•  Training and optimization takes several days, as opposed to a few minutes for RF’s

•  Determining feature importance is very cumbersome, and very slow compared to RF’s
‒ Each input parameter’s value is varied by a small amount, one parameter at a

time. The observed changes in the output are used to determine the Jacobian for
each parameter, for each time slice. The sum of each parameter’s Jacobians over
all time slices gives a relative feature importance.

But, using an ensemble of 32 RNN’s, our initial finding is that they perform better
than RF’s, at least on C-Mod data (which is the most difficult of our set of
tokamaks to predict accurately)

Comparison of RNN and Random Forests
performance on C-Mod data

32	RNN	Ensemble	
𝑇𝑃𝑅∼94% @1𝑚𝑠, ~55%
@20𝑚𝑠	
𝐹𝑃𝑅∼6%	

F1	optimum	
𝑇𝑃𝑅∼75% @1𝑚𝑠, ~25%
@20𝑚𝑠	
𝐹𝑃𝑅∼2%	

Some next steps

•  Install our trained RF in the EAST PCS and run in real time. Possibly use the
output to fire MGI valve

•  Upgrade our RF predictor that’s currently running in the DIII-D PCS to determine
feature importance in real time

•  Develop RNN’s for DIII-D and EAST, and compare to RF’s

•  After training disruption prediction algorithms on one tokamak’s database, try
applying it to the other tokamaks’ data. The long-term goal is to determine if a
universal disruption warning algorithm can be realized using AI methods.

