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Introduction 

There are a number of AI methods that have been applied to disruption 
prediction: neural networks (NN, RNN, CNN), support vector machines 
(SVM), random forests (RF), generative topographic maps (GTM), etc. 
‒ All these methods require extensive databases of disruption-relevant 

signals, which we have compiled for C-Mod, DIII-D, EAST, and KSTAR. 
‒ We desire a low rate of missed disruptions and a low rate of false positives 

Most of our group’s efforts have been on the training, optimization, and 
testing of random forests algorithms for C-Mod, DIII-D, and EAST for real 
time use. 
‒ We now have an RF predictor running in real time in the DIII-D plasma 

control system, and will have the same on EAST soon. 

We have also begun working with recurrent neural networks (RNN), and 
comparing their performance to random forests. 



A bit more information 

Avoiding a disruption is preferable to having to mitigate a disruption.  
This requires: 
‒ a sufficiently long warning time to allow the plasma control system 

to modify the discharge appropriately  
‒ knowing which of the plasma input signals are most responsible for 

the prediction of an impending disruption 

This is known as “interpretability” or “feature contribution analysis”.  (In 
AI, the input signals are called “features”.) 
‒ This is notoriously difficult for most AI methods 
‒ We need to do it in real time 
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SQL databases established on different tokamaks 

•  Time series (0D) of 40-60 plasma parameters of thousands of  
disrupted and non-disrupted discharges for different devices. 

 

Device Discharges Samples/ Feature 

C-Mod 5507 498,925 

DIII-D 13245 3,018,096 

EAST 18751 1,518,082 

KSTAR 4219 773,083 
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Q: What is a ‘random forest’? 
A: a collection of decision trees 

Q: What is a ‘decision tree’ ? 



Example of simple ‘training’ dataset 

–  Just 2 ‘physics’ parameters: x1, x2 
–  (Our disruption datasets have 40+ parameters: βN, q95, Prad, … ) 
–  2 classes: red, blue (analogous to ‘stable’ or ‘close to disrupt’ classes) 

Based on the training dataset, can we develop a set of rules about x1 and x2 that tell us when the data 
will be red, and when the data will be blue? 
If yes, then if we are given new values for x1 and x2, we can apply those rules to predict whether the 
new data will be red or blue. 



Example of simple ‘training’ dataset 

Humans: excellent at image processing and spatial recognition! 
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Example of simple ‘training’ dataset 

Computers: quick and accurate at math, but terrible at spatial recognition! 

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data 



Example of simple ‘training’ dataset 

Computers: quick and accurate at math, but terrible at spatial recognition! 
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space contains only red data or only blue data 
 
Example: start with x1  



Example of simple ‘training’ dataset 

Computers: quick and accurate at math, but terrible at spatial recognition! 

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data 
 
Example: start with x1 
Problem: at what value of x1 should I divide the dataset? 



E. Alpaydin, “Introduction to Machine Learning”, 2nd edition, MIT Press 

There is a mathematical way to determine the best value to divide the dataset: 
Minimize the ‘total impurity’ 
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There is a mathematical way to determine the best value to divide the dataset: 
Minimize the ‘total impurity’ 

-0.536 



Example of simple ‘training’ dataset 

Computers: quick and accurate at math, but terrible at spatial recognition! 

Decision tree approach: Divide (x1,x2)-space into smaller and smaller sub-spaces, until each sub-
space contains only red data or only blue data 
 
Example: start with x1  
Divide dataset at x1 value that minimizes the ‘total impurity’ 

-0.536 



Now we have two subdivided datasets:  

This region of (x1, x2)-space only contains red data.  We do not have to subdivide this region any more. 



Now we have two subdivided datasets:  

This region of (x1, x2)-space still contains both red and blue data.  We need to subdivide this region 
again. 
This time, use x2 to subdivide the data* 
At what value of x2 should I divide the dataset? 

*The computer does not know which parameter is best to choose, especially when there are 
many parameters.  Most decision tree algorithms pick the parameter randomly. 



Find the value of x2 that minimizes the ‘total impurity’ 

0.344 



Divide dataset at x2 value that minimizes the ‘total impurity’ 

0.344 



Rules:   x1 > -0.536  AND  x2 > 0.344                blue 
             x1 < -0.536   OR   x2 < 0.344                red  

Now we have two more subspaces of the dataset: 

Both of these regions of the (x1, x2)-space are ‘pure’.  We do not need to subdivide any 
more.  We have learned the rules (parameters and values) that define red regions and 
blue regions for our simple training set.  For new values of (x1, x2), we can apply the 
same rules to predict whether they will be red or blue. 



We can illustrate this process using a tree-like structure  

0.344 

-0.536 
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We can illustrate this process using a tree-like structure  

decision node 

decision node 

branches 

branches 

leaf 

leaf leaf 

Our simple training dataset only requires a small decision tree.  What if we had 
a more complicated dataset? 

0.344 

-0.536 



Example of a more complicated ‘training’ dataset 



Example of a more complicated ‘training’ dataset 

Possible pattern recognition by a human 



Example of a more complicated ‘training’ dataset 

or maybe this 



Example of a more complicated ‘training’ dataset 

But probably not this  

Overfitting?  



A decision tree can always be fully “trained”.  It may have many branches and many leaves.  
Some leaves may contain only a small number of points.  This could be an example of 
“overfitting”. 

Example of a more complicated ‘training’ dataset 



Random Forests avoid overfitting 

A fully grown decision tree (i.e. every branch ends in a pure leaf) is 
subject to overfitting the training data. 
 
This problem can be overcome by growing many independent, 
uncorrelated decision trees, and averaging their test data predictions.  
This collection of independent trees is called a Random Forest. 
 
For our disruption prediction application, we selected the 10-12 most 
relevant plasma parameters.  We grow (i.e. train) 500 independent trees.  
(It takes only 15-20 seconds to train using multiprocessing on 32 CPU 
cores.) 
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graphical depiction of a single tree in a Random Forests 

max_depth = 3 

fully-grown tree 
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DPRF has run in DIII-D PCS during 2018 experimental 
campaign - 𝜏𝑐𝑙𝑎𝑠𝑠 set at 350 ms before the disruption 
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DPRF was trained on ~5300 DIII-D discharges, 16% 
disruptive, from the 2014-2017 experimental campaigns 

•  Training only on flattop data; 
§  No rampup or rampdown (disruptions). 

– Not tailored on specific  
disruption dynamics; 
§  Only causal filtering; 
§  Only unintentional disruptions; 
§  No hardware-related disruptions. 

•  Real-time inference on unseen shots: 
– Offline training, then  

translation to C* for real-time integration; 
– Each CPU cycle, the 9-features vector is 

evaluated (250-300 µs)and inference  
stored as disruptivity signal. 

*sklearn-porter, https://github.com/nok/sklearn-porter, D. Morawiec. 
C. Rea et al., submitted to Nuclear Fusion (2019). 
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DPRF disruptivity for flattop disruption starts to rise  
above 60% about 240ms before disruption event 

Which are the 
drivers of high 
disruptivity? 
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Disruption Prediction via Random Forests (DPRF) Algorithm

•  Decision	tree	ensemble	algorithm	currently	implemented	for	real-time	use	on	DIII-D	PCS	
•  Maps	physics	inputs	​𝑥 	at	each	time	sample	to	a	disruption	probability	𝑦		
•  Predictions	can	be	interpreted	in	real-time	by	examining	the	decision	path	taken	by	each	new	sample	

𝟎.𝟎𝟔	𝟎.𝟐𝟗	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	
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Disruption Prediction via Random Forests (DPRF) Algorithm

•  Decision	tree	ensemble	algorithm	currently	implemented	for	real-time	use	on	DIII-D	PCS	
•  Maps	physics	inputs	​𝑥 	at	each	time	sample	to	a	disruption	probability	𝑦		
•  Predictions	can	be	interpreted	in	real-time	by	examining	the	decision	path	taken	by	each	new	sample	

𝟎.𝟎𝟔	𝟎.𝟐𝟗	

Feature	contributions	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	
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DPRF disruptivity for flattop disruption starts to rise  
above 60% about 240ms before disruption event 

•  Disruptivity breakdown  
via feature contributions 
analysis:  
Positive/negative 
contributions are 
extracted from the 
decision paths traversed 
by the data sample 
along the individual 
estimators (trees) in the 
forest during inference. 
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Locked mode proxy, safety factor and Greenwald density 
fraction contribute to most of the increasing disruptivity 

•  Increasing DPRF 
disruptivity reflects input 
features deviations. 

•  Positive and negative 
contributions push 
towards disruptive and  
non disruptive  
operational spaces. 

non disruptive 

disruptive 
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actual time 
traces used for 
inference in real-
time 

feature 
contributions of 
raw signals 
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Increasing disruptivity, interpreted via feature contributions,  
reflects plasma parameters deviations to disruptive scenario 
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Increasing disruptivity, interpreted via feature contributions,  
reflects plasma parameters deviations to disruptive scenario 

 1-2    3 

LON 
(LOQ) 
q95 ~ 3.2 

ML DISRUPTION 

 [1]         [2]             [3] 

 4s        4.14s         4.37s  

•  Feature contributions 
analysis successfully 
identifies chain of 
events leading to 
disruption; 

•  PCS implementation 
could enable real-time 
scenario detection. 
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EAST DPRF trained on ~7500 shots in the 2014-2017 
campaigns - 𝜏𝑐𝑙𝑎𝑠𝑠 set at 100 ms before the disruption 
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Inter-shot disruptivity 
predictions: 

•  DPRF trained on  
GA clusters; 

•  Data preprocessed 
on EAST servers once 
availble; 

•  DPRF disruptivity 
and features 
contributions available 
~4-5 min after shot. 

Real-time implementation under way 
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Spatial profile information can be condensed into 
‘profile width’ or ‘profile peaking’ signals  

AXUV	arrays	on	EAST	

•  Te width from ECE and/or Thomson scattering 

•  Te peaking from ECE and/or Thomson 
scattering 

•  ne peaking from Thomson scattering 

•  Pressure peaking from ne x Te 

•  Prad peaking from AXUV arrays 

•  divertor vs core Prad  
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‘Peaking Factors’ Add Spatial Information to Inputs for Prediction

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	
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Can Feature Contributions Be Indicative of Disruption Precursors?

•  Implemented	post-mortem	manual	analysis	
of	>	250	disruptions	from	DIII-D	2015/2016	

•  Identified	physics	precursors	in	disruptive	
event	chains	

•  Strong	correlation	between	type	of	first	
precursor	and	experimental	run	

•  19	of	21	MARFE	disruptions	during	
experiments	studying	detachment	

•  74%	of	RAD/UFO	disruptions	during	
metal	ring	campaign	

•  79%	of	Locked	Mode	disruptions	are	
during	runs	studying	LM	avoidance,	TM	
control,	and	ELM	control	with	RMPs	

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	
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True Positive Example: A clearly triggered LM disruption 

										K.	Montes	–	3DSP	Meeting,	July	29th,	2019	
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False Positive Example: Crash and Recovery?

•  DPRF	fooled	by	a	large	crash	and	
radiative	event	near	𝑡∼5 𝑠	

•  1D	information	contributes	most	to	the	
prediction	

•  Soft	landing	&	rampdown	classifies	this	
shot	as	a	false	positive	

Temperatur
e	

Density	

Radiated	Power	
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For which non-disruptive discharges did we trigger an alarm?

3	

1	

3	
3	

1	

2	

Triggering	Events	of	False	Positive	Alarms	

Minor	Disruptions	 Thermal	collapse	&	recovery	

RMP?	 Non-disruptive	LM	

Ambiguous	 signal	fault	

•  False	positive	rate	(FPR)	≈7%	
•  If	minor	disruptions	and	thermal	

collapses/recoveries	are	excluded,	
FPR	reduces	to	≈5%	

•  Decoupling	the	pickup	from	the	RMP	
coils	and	the	n=1	LM	signal	could	
further	reduce	FPR	to	≈3%	



Random Forest vs Recurrent Neural Network 

There are a number of reasons why Random Forest is an attractive Machine Learning method: 

–  The architecture of a Random Forests involve only a couple design parameters, which are 
easily optimized 

–  Different features (plasma parameters), with vastly different numerical ranges, present no 
issues 

–  Data can be sampled at non-uniform rates  
–  For Random Forests, the degree to which each feature contributes to the classification 

decision can be characterized in a straightforward deterministic way (“white box”)  

HOWEVER: 

RF classification is done on each time slice independently 

•  Information from previous classification decisions is not used in determining the 
classification of the current time slice 

•  The classification of the current time slice is not used for classification decisions of future 
time slices. 



Neural Networks are another AI method for classification 
problems 

Many design parameters that can be difficult to determine: 
•  How many hidden layers? 
•  How many nodes in each hidden layer? 
•  1000’s or millions of weights to determine/optimize  

– Deep Learning; back-propagation; 
•  Difficult to determine the degree to which each feature contributes to the 

classification decision (“black box”) 

But their complexity can incorporate features such as temporal history 



Recurrent Neural Networks (RNN’s) have the capability to 
include past classification information in current and 

future decisions  



Our initial experiences working with RNN’s 

•  Data had to be re-sampled to be on a uniform timebase 

•  All plasma input parameter numerical values must be normalized and shifted to have 
similar numerical ranges 

•  Training and optimization takes several days, as opposed to a few minutes for RF’s 

•  Determining feature importance is very cumbersome, and very slow compared to RF’s 
‒ Each input parameter’s value is varied by a small amount, one parameter at a 

time.  The observed changes in the output are used to determine the Jacobian for 
each parameter, for each time slice.  The sum of each parameter’s Jacobians over 
all time slices gives a relative feature importance. 

But, using an ensemble of 32 RNN’s, our initial finding is that they perform better 
than RF’s, at least on C-Mod data (which is the most difficult of our set of 
tokamaks to predict accurately) 



Comparison of RNN and Random Forests 
performance on C-Mod data 

32	RNN	Ensemble	
𝑇𝑃𝑅∼94% @1𝑚𝑠, ~55% 
@20𝑚𝑠	
𝐹𝑃𝑅∼6%	

F1	optimum	
𝑇𝑃𝑅∼75% @1𝑚𝑠, ~25% 
@20𝑚𝑠	
𝐹𝑃𝑅∼2%	



Some next steps 

•  Install our trained RF in the EAST PCS and run in real time.  Possibly use the 
output to fire MGI valve 

•  Upgrade our RF predictor that’s currently running in the DIII-D PCS to determine 
feature importance in real time 

•  Develop RNN’s for DIII-D and EAST, and compare to RF’s 

•  After training disruption prediction algorithms on one tokamak’s database, try 
applying it to the other tokamaks’ data.  The long-term goal is to determine if a 
universal disruption warning algorithm can be realized using AI methods. 


