CENTER FOR TOKAMAK TRANSIENTS SIMULATION

CTTS Overview

Stephen C. Jardin

Theory and Simulation of Disruptions Workshop PPPL, August 5-7, 2019

CTTS Participants

PHYSICS TEAM

- PPPL: C. Clauser, N. Ferraro,
 I. Krebs, S. Jardin, C. Liu, C. Zhao
- GA: V. Izzo, C. Kim ,L. Lao, B. Lyons, J. McClenaghan, P. Parks
- **U. Wisc**: K. Bunkers, C. Sovinec, G. Wang, P. Zhu
- Utah State U: E. Held
- Tech X: E. Howell, J. King, S. Kruger
- SBU: R. Samulyak
- HRS Fusion: H. Strauss

HPC TEAM

- **RPI**: M. Shephard, S. Seol, W. Tobin
- LBL: N. Ding, X. Li, Y. Liu, S. Williams
- PPPL: J. Chen
- SBU: R. Samulyak

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 2.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- 3. Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

M₃D-C¹ and NIMROD solve ₃D MHD Equations in Toroidal Geometry including Impurity Radiation and Runaway Electrons

$$\begin{split} &\partial n_i / \partial t + \nabla \bullet (n_i \mathbf{V}) = \nabla \bullet D \nabla n_i + S_n \\ &\partial n_Z^{(j)} / \partial t + \nabla \bullet (n_Z^{(j)} \mathbf{V}) = \nabla \bullet D \nabla n_Z^{(j)} + I_Z^{(j-1)} n_Z^{(j-1)} - \left(I_Z^{(j)} + R_Z^{(j)}\right) n_Z^{(j)} + R_Z^{(j+1)} n_Z^{(j+1)} + S_Z^{(j)} \\ &\partial \mathbf{A} / \partial t = -\mathbf{E} - \nabla \Phi \\ &\nabla_{\perp} \bullet \frac{1}{R^2} \nabla \Phi = -\nabla_{\perp} \bullet \frac{1}{R^2} \mathbf{E} \\ &\mathbf{B} = \nabla \times \mathbf{A} \end{split} \\ & \mathbf{M} 3 \mathbf{D} \cdot \mathbf{C} 1 \qquad \partial \mathbf{B} / \partial t = -\nabla \times \mathbf{E} \\ &\nabla \bullet \mathbf{B} = 0 \end{aligned} \\ & \mathbf{N} \mathbf{IM} \mathbf{R} \mathbf{O} \mathbf{D} \qquad \mathbf{A} \\ & \mathbf{P} (\partial \mathbf{V} / \partial t + \mathbf{V} \bullet \nabla \mathbf{V}) + \nabla p = \mathbf{J} \times \mathbf{B} - \nabla \bullet \mathbf{\Pi} - \boldsymbol{\varpi} \mathbf{V} + \mathbf{S}_m, \qquad \mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta (\mathbf{J} - \mathbf{J}_{RA}) + \mathbf{S}_{CD} \\ & \frac{3}{2} \left[\frac{\partial p_e}{\partial t} + \nabla \bullet \left(p_e \mathbf{V} \right) \right] = -p_e \nabla \bullet \mathbf{V} + \mathbf{J} \cdot \mathbf{E} - \nabla \bullet \mathbf{q}_e + Q_\Delta + S_{eE} \qquad \mathbf{q}_{e,i} = -\kappa_{e,i} \nabla T_{e,i} - \kappa_{\parallel e,i} \nabla_{\parallel} T_{e,i} \\ & \frac{3}{2} \left[\frac{\partial p_i}{\partial t} + \nabla \bullet \left(p_i \mathbf{V} \right) \right] = -p_i \nabla \bullet \mathbf{V} - \mathbf{\Pi}_i : \nabla \mathbf{V} - \nabla \bullet \mathbf{q}_i - Q_\Delta + \frac{1}{2} \boldsymbol{\varpi} V^2 + S_{iE} \end{split}$$

- Also, separate equations for resistive wall and vacuum regions
- Different options for Runaway Electron current \mathbf{J}_{RA}
- Option for energetic ion species (not used here)

M₃D-C¹ and NIMROD have very different numerical implementations

MA-D C1

	M3D-C-	NIVIROD
Poloidal Direction	Tri. C ¹ Reduced Quintic FE	High. Order quad C ^o FE
Toroidal Direction	Hermite Cubic C ¹ FE	Spectral
Magnetic Field	$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi$	$\mathbf{B} = B_r \hat{R} + B_z \hat{Z} + B_{\varphi} \hat{\varphi}$
Velocity Field	$\mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp}$	$\mathbf{V} = V_r \hat{R} + V_z \hat{Z} + V_{\varphi} \hat{\varphi}$
Coupling to Conduc	same matrix	Separate matrices w interface

Both codes use:

- Split Implicit Time advance
- Block-Jacobi preconditioner based on SuperLU_DIST
- GMRES based iterative solvers
- Impurity ionization and recombination rates from KPRAD

1. Code Descriptions

- 2. Forces due to Vertical Displacement Events
- 3. Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Vertical Displacement Events: (VDEs)

K. Bunkers: The influence of boundary conditions on NIMROD Axisymmetric VDE computations

C. Sovinec: Update on axisymmetric VDE benchmarking **Strauss:** Thermal quench and asymmetric wall force in ITER disruptions **Clauser:** Vertical Force during VDEs in ITER and the role of halo currents **Jardin**: Coupling of M₃D-C¹ to Carridi

5.3 T 15MA ITER

M₃D-C¹ is being interfaced with the CARRIDI engineering code to produce realistic forces for ITER

- CARRIDI is presently interfaced with the 2D equilibrium evolution code CARMAoNL
- Above benchmark between M₃D-C¹ & CARMAoNL was presented at 2019 EPS

- CARRIDI detailed electro-magnetic model of ITER structure.
- Now interfacing M₃D-C¹VDE simulation with CARRIDI to extend analysis to 3D plasma

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 - 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Disruption Mitigation via Impurity Injections -- Stand Alone

- B. Lyons ... Recent progress in 3D modeling of disruption mitigation
- V. Izzo ... Modeling of shell pellet injection for disruption mitigation on DIII-D
- S. Jardin ... Modeling of Electromagnetic pellet injector in NSTX-U

Electromagnetic pellet injector offers advantages for ITER; proposal to test on NSTX-U

- Very fast response time (2-3 ms)
- Speeds up to 1 km/s
- High resolution modeling of 1 mm Carbon pellet as 2.5 cm (poloidal) x 25 cm (toroidal) Gaussian source

Electron Temperature

4 time slices in a M3D-C¹ simulation of a 1 mm Carbon pellet injected into NSTX-U via EPI

Injection Plane Contours at different times

Change in Electron Temp.

(a) - 0.6 keV (b) - 1.7 keV (c) - 1.7 keV (d) -1.7 keV

Carbon Density:

(a) 6.8 10¹⁹ m⁻³ (b) 5.2 10¹⁹ m⁻³ (c) 5.2 10¹⁹ m⁻³ (d) 3.1 10¹⁹ m⁻³

Radiation source:

(a) - 3.2. GW/m³ (b) - 1.0 GW/m³ (c) - 1.1 GW/m³ (d) - 0.4 GW/m³

Contours at t=0.13 ms at 4 toroidal locations for M3D-C¹ simulation of 1 mm Carbon EPI in NSTX-U

Same time (t=0.130 ms), different toroidal locations

Change in Electron Temp.

(a) – 969. eV (b) - 1062 eV (c) – 1034 eV (d) - 1067eV

Carbon Density:

(a) 8.20 10¹⁹ m⁻³ (b) 1.86 10¹⁹ m⁻³ (c) 0.07 10¹⁹ m⁻³ (d) 1.86 10¹⁹ m⁻³

Radiation source:

(a) - 4400 MW/m³ (b) - 40. MW/m³ (c) - 0.5 MW/m³ (d) -40. MW/m³

Convergence study of toroidal resolution and toroidal pellet extent

Plasma properties and pellet source distributed over the Gaussian Distribution:

$$S = \frac{1}{(2\pi)^{3/2} V_p^2 V_t} \exp\left[-\frac{(R - R_p)^2 + (Z - Z_p)^2}{2V_p^2} - \frac{RR_p \left(1 - \cos(\varphi - \varphi_p)\right)}{V_t^2}\right]$$

Convergence study in # of toroidal planes indicates the highest toroidal resolution used so far may not be high enough.....Still in progress.

Te contours for different toroidal resolutions (injection plane)

> 8 planes var_tor = 1.00 m

16 planes var_tor = 0.50 m

32 planes var_tor = 0.25 m

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- 3. Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Disruption Mitigation via Impurity Injections – via code coupling

R. Samulyak...Simulation studies of the ablation of Neon pellets and SPI fragments for plasma disruption mitigation in tokamaks

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- 3. Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Runaway Electrons interacting with MHD

C. Zhao .. Simulation of MHD instabilities with runaway electron current using M₃D-C¹

G. Wang ...Reduced models of runaway electrons in NIMROD ... (poster)

 A collaboration between PPPL, GA, and ORNL is initialized to couple both M₃D-C¹ and NIMROD with KORC to model runaway electron diffusion and its back reaction to MHD instabilities

KORC: Highly scalable PIC RE code using GPUs (ORNL)

Perturbed current of (1,1) mode From M₃D-C¹ without RE current

Perturbed current of (1,1) mode with RE current

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- 3. Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Must Address Communication to Improve Scaling Performance

- SuperLU Preconditioners are essential for the solvers in M3D-C¹ and NIMROD
- Solver performance is dominated by MPI communications in the triangular solve
- Performance improvements in SpTRSV improves application performance and scalability

Implementing One-Sided Communication:

- Remote direct memory access (RDMA) is a process to directly access memory on remote processes without involvement of the activities at the remote side.
- Light-weight asynchronous primitives provides a pathway to efficient DAG execution and accelerator-based exascale solvers
- Shown below: fompi one-sided communication greatly improves bandwidth over MPI two-sided

DAG: Directed Acyclic Graph

Performance model for Sparse Triangular Solvers

- LBL built a critical path analysis tool to determine the critical path with consideration of process decomposition
 - Circles can represent:
 - a DGEMV or TRSMV in SpTRSV
 - a kernel in the application
 - Edges can represent:
 - data dependencies
 - execution flow
- LBL modeled mat-vecs and communication in SpTRSV using the critical path analysis tool
 - Empirical observations of performance fit within the model's performance bounds

DGEMV & TRSMV are matrix-vec operations SpTRSV: SuperLU_dist triangular solve

N. Ding, S. Williams, S. Li, Y. Liu 25

One-Sided Communication implemented for Sparse Triangular Solvers

- LBL created a one-sided MPI version of SpTRSV on Cray system
- Attained a 2.2x speedup for M3D-C¹ matrix at 4096 processes on Cori(NERSC) over the existing two-sided in SuperLU_DIST

SpTRSV: SuperLU_dist triangular solve

Communication-avoiding 3D sparse LU factorization in SuperLU_dist

Algorithm innovation: 3D grid of MPI processes, Z-dimension has some data replication, but results in reduced communication and increased parallelism

Shown in graph is improvement in M₃D-C¹ velocity matrix for 32, 128, 512 MPI processes: (1.3x, 1.8x, 5x)

 $\mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp}$

Velocity Matrix Restructuring for Improved Preconditioning

• M₃D-C¹ uses a physics-based Helmholtzlike decomposition of the velocity field:

 $\mathbf{V} = R^2 \nabla \boldsymbol{U} \times \nabla \boldsymbol{\varphi} + \boldsymbol{\omega} R^2 \nabla \boldsymbol{\varphi} + R^{-2} \nabla_{\perp} \boldsymbol{\chi}$

- The old ordering mixed these 3, physically different velocity variables in the same vector
- New ordering allows us to separate these, facilitating a more efficient pre-conditioning strategy.

Because each toroidal plane couples only to adjacent toroidal planes, the full velocity matrix is of blocktridiagonal form. Corner elements due to periodicity.

 \mathbf{X}_{i} contains all the velocity variables on plane j

(R, φ, Z) coordinates

Adjacency – based reordering has potential to improve performance

- Colors correspond to mesh numbering: blue \rightarrow red
- Re-ordering can improve cache misses and Particle-in-Cell performance
- Now being evaluated for M₃D-C¹ and NIMROD

Center for Tokamak Transient Simulations: THANK YOU

- 1. Code Descriptions
- 2. Forces due to Vertical Displacement Events
- Disruption Mitigation via Impurity Injections
 3.1 Stand Alone
 3.2 via code coupling
- 4. Runaway Electrons interacting with MHD
- 5. High-Performance Computing

Extra slides

