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Runaway electrons (REs) produced during disruptions  

can damage tokamak wall 

• Localized impact of high-energy RE 
beam can damage tokamak wall 

 
• ITER mitigation strategy if disruption 

cannot be avoided [1]: 
 

− Massive impurity injection to dissipate 
thermal and magnetic energy and 

prevent formation of REs 
 

− This approach has yet to be proven 
 

• Studying of post-disruption runaway 

plasma remains important 
 

• This talk: 
 

− Equilibria of RE beam in DIII-D 
 

− RE-driven instabilities in DIII-D 
 

 
[1] Breizman et al NF 2019 

Formation and loss of RE beam 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Frequency chirping instabilities 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 

Measurements of f(E) 

provides information on: 

 

• maximum energy of REs 
 

• major current carriers 
 

• balance between 

accelerating and 

dissipating factors 
 

• possibility of RE-driven 

instabilities 

 

Motivation 
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Energy distribution function of RE beam is generally 

poorly diagnosed 

• How to predict RE physics in ITER? 
 

− Measure REs in existing tokamaks 
and verify RE models 
 

• Easy to say, but difficult to do: 
 
− Energy range from 0.1 to 30 MeV 

− Current from 0.1 to 1 MA 
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Energy distribution function of RE beam is generally 

poorly diagnosed 

• How to predict RE physics in ITER? 
 

− Measure REs in existing tokamaks 
and verify RE models 
 

• Easy to say, but difficult to do: 
 
− Energy range from 0.1 to 30 MeV 

− Current from 0.1 to 1 MA 
 
 
 

Hollmann2015 (DIII-D): no data in range 0.1−10 MeV 

Nocente2018 (ASDEX-U): no spatial measurements 

Paz-Soldan2017 (DIII-D): Ohmic plasma,  
effects specific to RE plateau can be missed 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII-D 

• RE energy distribution can be 
constrained via hard X-ray (HXR) 

bremsstrahlung measurements and 
using recent advances in: 
 

− New scenario: low-current RE 
beam in low-density plasma 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII-D 

• RE energy distribution can be 
constrained via hard X-ray (HXR) 

bremsstrahlung measurements and 
using recent advances in: 
 

− New scenario: low-current RE 
beam in low-density plasma 
 

 Low, measureable HXR flux  (∝ 𝑛𝑍2) 

 Long-lasting RE plateau 
 Large variability of applied voltage 

 
 

 

A B 

• Injection of small Ar pellet → disruption and 

formation of RE beam 
 

• D2 massive gas injection → purge of Ar from    

RE beam 

A 

B 

≈180 kA 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII-D 

• RE energy distribution can be 
constrained via hard X-ray (HXR) 

bremsstrahlung measurements and 
using recent advances in: 
 

− New scenario: low-current RE 
beam in low-density plasma 
 

 Low, measureable HXR flux  (∝ 𝑛𝑍2) 
 Long-lasting RE plateau 
 Large variability of applied voltage 

 
− Gamma Ray Imager upgrade: 

ultrafast gamma detector [1,2] 
 

 Time resolution increased by 1000x 
 MHz counting capabilities 

 
 

 
 

A B 

• Injection of small Ar pellet → disruption and 

formation of RE beam 
 

• D2 massive gas injection → purge of Ar from    

RE beam 

A 

B 

[1] Dal Molin et al RSI 2018 

[2] Nocente et al RSI 2018 

≈180 kA 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII-D 

• RE energy distribution can be 
constrained via hard X-ray (HXR) 

bremsstrahlung measurements and 
using recent advances in: 
 

− New scenario: low-current RE 
beam in low-density plasma 
 

 Low, measureable HXR flux  (∝ 𝑛𝑍2) 
 Long-lasting RE plateau 
 Large variability of applied voltage 

 
− Gamma Ray Imager upgrade: 

ultrafast gamma detector [1,2] 
 

 Time resolution increased by 1000x 
 MHz counting capabilities 

 
 

 
 

A B 

• Injection of small Ar pellet → disruption and 

formation of RE beam 
 

• D2 massive gas injection → purge of Ar from    

RE beam 

A 

B 

Region of analysis 

[1] Dal Molin et al RSI 2018 

[2] Nocente et al RSI 2018 
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RE energy distribution function conserves over 

observation period and has bump at 5–6 MeV  

• Measured RE distribution function 

has maximum energy up to 20 MeV 
− Consistent with other machines 

reporting REs up to 20−30 MeV 
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RE energy distribution function conserves over 

observation period and has bump at 5–6 MeV  

• Measured RE distribution function 

has maximum energy up to 20 MeV 
− Consistent with other machines 

reporting REs up to 20−30 MeV 

 

• There is a bump at 5−6 MeV 

suggesting possibility of kinetics 

instabilities 
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RE energy distribution function conserves over 

observation period and has bump at 5–6 MeV  

• Measured RE distribution function 

has maximum energy up to 20 MeV 
− Consistent with other machines 

reporting REs up to 20−30 MeV 

 

• There is a bump at 5−6 MeV 

suggesting possibility of kinetics 

instabilities 

 

• RE distribution function conserves 

over 450 ms at small Eφ=0.1−0.2V/m 

− This can be explained by collisional 

damping: Eφ/Ec = 1−2, τcoll = 7 ms 

(D2 bound electrons are important!) 

− Synchrotron damping is small:         

τrad = 160 τcoll  
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• Measured RE distribution function 

has maximum energy up to 20 MeV 
− Consistent with other machines 

reporting REs up to 20−30 MeV 

 

• There is a bump at 5−6 MeV 

suggesting possibility of kinetics 

instabilities 

 

• RE distribution function conserves 

over 450 ms at small Eφ=0.1−0.2V/m 

− This can be explained by collisional 

damping: Eφ/Ec = 1−2, τcoll = 7 ms 

(D2 bound electrons are important!) 

− Synchrotron damping is small:         

τrad = 160 τcoll  
 

• Main features are captured via     

0D-2V Fokker-Plank modelling 

 

RE energy distribution function conserves over 

observation period and has bump at 5–6 MeV  
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 

Energy distribution function 

of RE beam is obtained via 

HXR measurements: 

 

• quasi-stationary in low 

density plasma 

 

• has a bump at 5 MeV 
 

• Fokker-Plank modelling 

qualitatively matches 

the experiment 

 

Conclusion 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 
Peaking of post-disruption RE 

beam current profile is 

predicted in simulations [1−3] 
 

JET reported experimentally 

observed peaked profile [4, 5] 

 

Models show excitation of MHD 
instabilities driven by peaked 

RE current profile [6−9] 

 

Motivation 

[1] Eriksson et al PRL 2004  [4] Gill et al NF 2000   [6] Smith et al PPCF 2009  

[2] Smith et al PoP 2006  [5] Loarte et al NF 2011  [7] Matsuyama et al NF 2017  
[3] Martin-Solis et al NF 2017       [8] Aleynikova et al PPR  2006 
       [9] Bandaru et al PRE  2019  
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Current profile of RE beam is resolved via vertical scan 

• f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
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• f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
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Current profile of RE beam is resolved via vertical scan 

• f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
 

• Beam passes 
the GRI sightline 

but keeps 
constant radius 
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Current profile of RE beam is resolved via vertical scan 

• f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
 

• Beam passes 
the GRI sightline 

but keeps 
constant radius 
 

• As a result, RE 
beam energy 
distribution 

function is 
spatially 
resolved 
providing 
current density 

profile 
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Post-disruption RE current is peaked but stable 

• Post-disruption current profile is 
more peaked than pre-
disruption current with greater 
li=1.13 vs 0.86 
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Post-disruption RE current is peaked but stable 

• Post-disruption current profile is 
more peaked than pre-
disruption current with greater 
li=1.13 vs 0.86 

 

• Post-disruption relatively small 
RE current (180 kA) is found 
stable likely due to elevated q 
profile 
 

• RE plateau sustains as long as 
there is transformer flux to drive 
it (observed up to 1.5 s) 
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• Post-disruption current profile is 
more peaked than pre-
disruption current with greater 
li=1.13 vs 0.86 

 

• Post-disruption relatively small 
RE current (180 kA) is found 
stable likely due to elevated q 
profile 
 

• RE plateau sustains as long as 
there is transformer flux to drive 
it (observed up to 1.5 s) 
 

• It is unclear when peaking 
takes place (during CQ [1,2] 

or/and high-Z RE plateau [3]) 

Post-disruption RE current is peaked but stable 

[1] Eriksson et al PRL 2004 
[2] Smith et al PoP 2006 
[3] McDevitt et al PPCF 2019 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 
RE current density profile is 

measured by taking moments 

of spatially resolved RE energy 
distribution function 

 

Compared to pre-disruption 

plasma, it is found be more 
peaked with greater li, but has 

elevated q profile and much 

greater qa 

 

No MHD instabilities are 

observed presumably due to 
relatively small RE current and 

high qa  

 

Conclusion 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 

180 kA RE beam has peaked 

current profile but is found to 

be MHD stable in DIII-D 
 

Small-scale MHD instabilities 

might increase RE dissipation 

while large-scale can cause 

complete RE loss 
 

To study MHD stability, RE 

beam is deliberately 

destabilized in DIII-D by 

ramping solenoid current 
 

Motivation 
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RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
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RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
 

• ECE shows fast fall and 
slow rise 

 

Right panel 
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RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
 

• ECE shows fast fall and 
slow rise 

 
• Visible radiation and 

density show fast rise 
and slow fall 
 

Right panel 



A. Lvovskiy/TSDW/August 2019 1908-10746/ 29 

RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
 

• ECE shows fast fall and 
slow rise 

 
• Visible radiation and 

density show fast rise 
and slow fall 
 

• No RE loss is observed 

despite fluctuations of 
core bremsstrahlung 
 
 

Right panel 
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RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
 

• ECE shows fast fall and 
slow rise 

 
• Visible radiation and 

density show fast rise 
and slow fall 
 

• No RE loss is observed 

despite fluctuations of 
core bremsstrahlung 
 

• External magnetics are 
tiny and incoherent 

Right panel 
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RE beam instability is observed when large 

accelerating voltage is applied 

• Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam 
 

• ECE shows fast fall and 
slow rise 

 
• Visible radiation and 

density show fast rise 
and slow fall 
 

• No RE loss is observed 

despite fluctuations of 
core bremsstrahlung 
 

• External magnetics are 
tiny and incoherent 

 
• What could it be? 

Right panel 
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Beam instability correlates with flashes of visible radiation 

[Video] 
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Flashes of visible radiation turn from solid circles into rings 

Sometimes toroidal movement of flashes can be seen 

Flashes of visible radiation localized in RE beam core  
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Ideal internal kink instability leading to sawtooth-like 

relaxation of RE current profile is proposed 

• Radiation is broadband and 
isotropic which excludes fast 
pitch-angle scattering and known 
kinetic instabilities 
 

• Possible mechanism of internal 

kink instability: 
 

− RE current profile peaks under 
applied accelerating voltage 
 

− Peaked current profile excites 

internal kink modes 
 

− Internal kink leads to sawtooth-like 
relaxation of RE current profile 
 

− As a result, ECE drops, but density, 

radiation and GRI spike 
 

− No RE loss and external magnetics 

GRI sightline 



A. Lvovskiy/TSDW/August 2019 1908-10746/ 35 

MARS-F modelling suggests excitation of internal 1/1 

kink mode  

• Initial stable current profile is 
modified to obtain q0=0.8 at 
constant full current 
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MARS-F modelling suggests excitation of internal 1/1 

kink mode  

• Initial stable current profile is 
modified to obtain q0=0.8 at 
constant full current 
 

• Peaked current profile leads to 

strong ideal internal 1/1 kink 
mode according to MARS-F 
simulations 
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MARS-F modelling suggests excitation of internal 1/1 

kink mode  

• Initial stable current profile is 
modified to obtain q0=0.8 at 
constant full current 
 

• Peaked current profile leads to 

strong ideal internal 1/1 kink 
mode according to MARS-F 
simulations 
 

• Weak edge modes support lack of 
external magnetic signals 

detected in experiment 
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MARS-F modelling suggests excitation of internal 1/1 

kink mode  

• Initial stable current profile is 
modified to obtain q0=0.8 at 
constant full current 
 

• Peaked current profile leads to 

strong ideal internal 1/1 kink 
mode according to MARS-F 
simulations 
 

• Weak edge modes support lack of 
external magnetic signals 

detected in experiment 
 

• Both experiment and modelling 
show no effect of internal kink on 
RE loss and global confinement 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

 

RE beam internal MHD 

instabilities are observed at 

large accelerating voltage 
 

Accel. voltage presumably 

leads to peaked current 

profile driving instabilities 

 
MARS-F modelling suggest 

formation of internal 1/1 kink 

mode 

 

Both experiment and 
modelling show no effect of 

internal instabilities on RE loss 

 

Conclusion 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

Conclusion 
 

200−300 kA RE beam is stable 

to global MHD instabilities in 

DIII-D likely due to large edge 
q (qa>10)  

 

RE beams with low qa are 

predicted in ITER, but MHD 

stability is rarely studied [1] 
 

Estimates for JET suggest qa<2 

as MHD limit for RE beam [2] 

 

External kink modes and 
termination of RE beam are 

observed at low qa in DIII-D 
 

Motivation 

[1] Aleynikova et al PPR 2016 
[2] Reux et al NF 2015 
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MHD instabilities are observed on the path to low qa 

with eventually major disruption of RE beam 

• Same initial conditions: post-
disruption RE beam in low-density 
plasma 
 

• 1 MA RE beam is accessed due to 

programming mistake providing 
very low qa ≈ 2 
 
 
 

[1] Paz-Soldan et al PPCF 2019 

[1] 
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MHD instabilities are observed on the path to low qa 

with eventually major disruption of RE beam 

• Same initial conditions: post-
disruption RE beam in low-density 
plasma 
 

• 1 MA RE beam is accessed due to 

programming mistake providing 
very low qa ≈ 2 
 

• Magnetic signals reveal isolated 
bursts with increasing amplitude 
 

 

[1] Paz-Soldan et al PPCF 2019 

[1] 
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MHD instabilities are observed on the path to low qa 

with eventually major disruption of RE beam 

• Same initial conditions: post-
disruption RE beam in low-density 
plasma 
 

• 1 MA RE beam is accessed due to 

programming mistake providing 
very low qa ≈ 2 
 

• Magnetic signals reveal isolated 
bursts with increasing amplitude 
 

• Each burst comes with HXR spikes 
indicating RE loss 
 

• ECE signal shows drops also 
indicating RE loss 

 
 

[1] Paz-Soldan et al PPCF 2019 

[1] 
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MHD instabilities are observed on the path to low qa 

with eventually major disruption of RE beam 

• Same initial conditions: post-
disruption RE beam in low-density 
plasma 
 

• 1 MA RE beam is accessed due to 

programming mistake providing 
very low qa ≈ 2 
 

• Magnetic signals reveal isolated 
bursts with increasing amplitude 
 

• Each burst comes with HXR spikes 
indicating RE loss 
 

• ECE signal shows drops also 
indicating RE loss 

 
• Finally, complete RE loss is 

observed at 𝜹𝑩𝒑 = 𝟏 kG 

 
 

[1] Paz-Soldan et al PPCF 2019 

[1] 

☠ 
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Equilibrium fitting with JFIT and EFIT reveals weaker 

instabilities at high qa and killer instabilities at qa ≈ 2 

• As RE current increases, qa 
decreases, and magnetic bursts 

become larger 
 
 
 

 

[1] 

[1] Paz-Soldan et al PPCF 2019 
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Equilibrium fitting with JFIT and EFIT reveals weaker 

instabilities at high qa and killer instabilities at qa ≈ 2 

• As RE current increases, qa 
decreases, and magnetic bursts 

become larger 
 

• Conventional operating space 
picture is accurate for RE equilibria 

 

[1] Paz-Soldan et al PPCF 2019 
[2] Chang et al PPCF 1987 
[3] Snipes et al NF 1988 

[1] 

☠ 
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Final RE lost is caused by huge (1 kG) and fast (10 μs) 
external kink mode 

[1] Paz-Soldan et al PPCF 2019 
[2] Y.Q. Liu et al To be submitted to NF 

• All REs are lost when 𝜹𝑩𝒑 reaches 

1 kG 
 

• Magnetic measurements 
compared to MARS-F modelling 
show 2/1 kink mode at low qa [2] 
 

• Early instabilities (at large qa) are 
different: likely internal or resistive 

kinks [2] 
 

• RE spatial loss becomes less 
localized as instabilities get larger 

  
 

 

[1] 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Freq. chirping instabilities 

Conclusion 
 

Killer kink instabilities are 

observed at large IRE and low qa 

 
Stability limit is the same as for 

regular plasma 

 

External or (external + internal) 

kinks are excited at qa ≈ 2 
 
𝜹𝑩𝒑 = 𝟏 kG terminates RE beam 

 

Prediction of RE evolution in ITER 

must take MHD stability into 
account 

 
 

Conclusion 

In more detail: Paz-Soldan et al PPCF 2019 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Frequency chirping                                                      

instabilities 

 

RE-driven kinetic instabilities 

get increasing attention [1-14] 

 
They can increase RE 

dissipation and be beneficial 

for RE mitigation in ITER 

 

Kinetic instabilities are 
excited in DIII-D during RE 

plateau under applied large 

decelerating voltage 

 

Motivation 

[1] Fülöp et al PoP 2006 

[2] Pokol et al PPCF 2008 

[3] Fülöp et al PoP 2009 

[4] Zhou et al PPCF 2013 

[5] Fülöp et al PoP 2014 

[6] Papp et al EPS-2014 

[7] Fredrikson et al NF 2014 

 

 

 

 

 

 

 

[8] Aleynikov et al NF 2015 

[9] Chu et al NF 2018 

[10] Spong et al PRL 2018  

[11] Heidbrink et al PPCF 2018 

[12] Liu et al PRL 2018 

[13] Liu et al NF 2018 

[14] Lvovskiy et al PPCF 2018 
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Frequency chirping instabilities are observed for the 

first time driven by runaway electrons in tokamak 

• Energetic particles can drive 
instabilities through wave-particle 
resonances 
 

• Frequency chirping instabilities are 
often observed driven by fast ions in 
tokamaks 
 

GAE in NSTX [1] 
[2] 

[3] 

[1] Fredrickson et al PoP 2006 
[2] Pinches et al PPCF 2004 
[3] Berk et al NF 2006 

TAE in MAST 

TAE in JET 
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Frequency chirping instabilities are observed for the 

first time driven by runaway electrons in tokamak 

• Energetic particles can drive 
instabilities through wave-particle 
resonances 
 

• Frequency chirping instabilities are 
often observed driven by fast ions in 
tokamaks 
 

• This talk: discovery of rapid 
frequency chirping driven by 

runaway electrons (REs) in DIII-D 
(2018 DIII-D Frontier Science Campaign) 

 
• These MHz-range chirping 

instabilities correlate with 
modification of RE distribution 

function and increased RE loss 

GAE in NSTX [1] 
[2] 

[3] 

TAE in MAST 

TAE in JET 

[1] Fredrickson et al PoP 2006 
[2] Pinches et al PPCF 2004 
[3] Berk et al NF 2006 
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RE loss increases under decelerating loop voltage 

• Same initial conditions: post-
disruption RE beam in low-density 

plasma 
 

• Large decelerating voltage with 
magnitude comparable with 
breakdown voltage is applied to 

RE beam 
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RE loss increases under decelerating loop voltage 

• Same initial conditions: post-
disruption RE beam in low-density 

plasma 
 

• Large decelerating voltage with 
magnitude comparable with 
breakdown voltage is applied to 

RE beam 
 

• This causes large fluctuations of 
edge and core hard X-ray signals 
(from lost and confined REs) 
 
 

 

 

edge 

core 
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RE loss increases under decelerating loop voltage 

• Same initial conditions: post-
disruption RE beam in low-density 

plasma 
 

• Large decelerating voltage with 
magnitude comparable with 
breakdown voltage is applied to 

RE beam 
 

• This causes large fluctuations of 
edge and core hard X-ray signals 
(from lost and confined REs) 
 

• Also, spikes of ECE are detected 
 
 

 

 

edge 

core 
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RE loss increases under decelerating loop voltage 

• Same initial conditions: post-
disruption RE beam in low-density 

plasma 
 

• Large decelerating voltage with 
magnitude comparable with 
breakdown voltage is applied to 

RE beam 
 

• This causes large fluctuations of 
edge and core hard X-ray signals 
(from lost and confined REs) 
 

• Also, spikes of ECE are detected 
 

• These are clear signs of RE-driven 
instabilities 
 

 

 

edge 

core 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 
• They have clear chirping nature 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 
• They have clear chirping nature and correlate with RE loss signal 
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High frequency range magnetic fluctuations (30−80 MHz) 

drive no significant RE loss 

• Two frequency bands of magnetic fluctuations: 1−10 MHz and 30−80 MHz 

• High frequency fluctuations do not drive any significant RE loss 
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Frequency of instabilities has Alfvénic dependence on Bφ 

• RE beam moves to HFS and senses increasing Bφ 

• f(Bφ) dependence is Alfvénic: 𝒇𝑨 ∝ 𝒗𝑨 ∝ 𝑩𝝓 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Its formation can be explained 

via RE acc. by electric field and 

collisional damping on D2 bound 

electrons 
 

• Relaxation of RE f(E) during 

chirping events is directly 

measured 

 

• This supports interactions between 

REs and instabilities 
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Possible mechanism of instabilities: REs drive Alfvénic 

waves, which scatter REs and increase RE loss 

[Heidbrink2002] 

• Decelerating loop voltage 
presumably leads to strong non-
monotonic feature (bump) at RE 

distribution function 
 

• This excites Alfvénic waves 
 

• Alfvénic waves interact with REs, 
scatter them and increase RE loss 

 
• Fast relaxation of RE distribution 

function can explain freq. chirping 
consistent with hole-clump model [1] 
 

• Fast pitch-angle scattering of REs 

can cause the observed ECE spikes  

[1] Berk, Breizman, Ye PRL 1992 

#175783 
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Compressional Alfven eigenmodes are most likely 

candidates for observed instabilities 

• Frequency of observed instabilities 
lies between 1−10 MHz 
 

 

[1] Heidbrink PoP 2002 

[1] 
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Compressional Alfven eigenmodes are most likely 

candidates for observed instabilities 

• Frequency of observed instabilities 
lies between 1−10 MHz 
 

• For given plasma parameters: 
− 𝒇𝒄𝒊 ≈ 𝟏𝟓 MHz 
− 𝒇𝑨 ≈ 𝟏. 𝟓 MHz 

 

 

[1] Heidbrink PoP 2002 

[1] 
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Compressional Alfven eigenmodes are most likely 

candidates for observed instabilities 

• Frequency of observed instabilities 
lies between 1−10 MHz 
 

• For given plasma parameters: 
− 𝒇𝒄𝒊 ≈ 𝟏𝟓 MHz 
− 𝒇𝑨 ≈ 𝟏. 𝟓 MHz 

 
• Compressional Alfven eigenmodes 

(CAEs) are most likely candidates for 
kinetic instabilities in the observed 
frequency region 

 
• Separated loops needed for 

measurements of toroidal and 
poloidal numbers (planned) 

[1] Heidbrink PoP 2002 

[1] 
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Outline 

New physics of RE beam: 

• Energy distribution function 

• Current density profile 

• Internal MHD instability 

• External kink instability 

• Frequency chirping                                                      

instabilities 

 
RE-driven frequency chirping 

instabilities are observed for the 

first time under decelerating 

voltage 

 

Low-frequency instabilities 

(1−10 MHz) correlate with 

intermittent RE loss 

 

Modification of RE distr. function 

is measured during chirping in 

low-frequency range consistent 

with hole-clump model 

 

Instabilities are likely CAEs 

driven by non-monotonic RE 

distr. function 

 

Conclusion 
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Summary 

• RE beam equilibria and RE-driven instabilities are studied in low density 

post-disruption plasma 

• Spatially resolved RE beam energy distr. funct. obtained for the first time 

− It has a bump at 5 MeV observed only in the core suggesting possibility of 
kinetic instabilities 

• RE beam current density profile is constrained via HXR measurements 

− It is more peaked than the pre-disruption plasma but found to be stable 

likely due to its elevated q profile 

• RE beam MHD instabilities are excited at large accelerating voltage 

− Presumably internal 1/1 kink instabilities are observed at low current and 
large qa, but these instabilities drive no RE loss 

− As RE current increases and qa decreases, magnetic bursts become larger 

and cause RE loss 

− RE beam is completely lost when qa ≈ 2 and 𝛿𝐵𝑝 = 1 kG 

• RE-driven frequency chirping instabilities are observed for the first time 

− Low-frequency (1−10 MHz) modes increase RE loss 

− Likely Compressional Alfven Eigenmodes (CAEs) 
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Summary 

1. Spatially resolved RE beam energy distr. func. obtained for the first time 

− It has a bump at 5 MeV observed only in the core suggesting possibility of 
kinetic instabilities 

2. RE beam current density profile is constrained via HXR measurements 

− It is more peaked than the pre-disruption plasma but found to be stable 
likely due to its elevated q profile 

3. RE beam MHD instabilities are excited at large accelerating voltage 

− Presumably internal 1/1 kink instabilities are observed at low current and 
large qa, but these instabilities drive no RE loss 

− As RE current increases and qa decreases, magnetic bursts become larger 
and cause RE loss 

− RE beam is completely lost when qa ≈ 2 and 𝛿𝐵𝑝 = 1 kG 

4. RE-driven frequency chirping instabilities are observed for the first time 

− Low-frequency (1−10 MHz) modes increase RE loss 

− Likely Compressional Alfven Eigenmodes (CAEs) 

 

 
In more detail:  

  [1,2,3] Lvovskiy et al To be submitted to NF     [3] YQ Liu et al To be submitted to NF 

  [3] Paz-Soldan et al PPCF 2019                        [4] Lvovskiy et al Submitted to NF 
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Backup slides 

 



• When electron changes its 

trajectory it emits photons 

 

• MeV electrons → MeV 𝜸 rays 

 
• 𝜸 rays (HXRs) are forward beamed 

based on RE energy 

 
• 𝒇𝒆(𝑬∥, 𝑬⊥) produces unique 

bremsstrahlung spectrum 

 

• DIII-D gamma ray imager (GRI) 

provides 2D view of RE 

bremsstrahlung emission [1−4] 
 

Backup: Bremsstrahlung radiation provides information  

on energy and distribution of REs 

[1] Pace et al. RSI 2016              [2] Cooper et al. RSI 2016 

[3] Paz-Soldan et al. PRL 2017   [4] Paz-Soldan et al. PoP 2018 
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Backup: Measurements during the RE plateau regime  

are challenging – upgrade with fast gamma detectors 

• Gamma flux due to 

bremsstrahlung emission is 
higher by 103−104 in RE 

plateau regime compared to 

QRE 

• BGO detectors are usually 

saturated after the disruption 

• New LYSO+MPPC detectors 

are capable to measure 

during the post-disruption 

stage 
 

 

Collaboration with  
U. Milano-Bicocca 

time [μs] 

v
o

lt
a

g
e

 [
m

V
] 

Response of gamma detectors 

to a single gamma pulse 

100 ns pulse! 
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Backup: HXR spectrum is obtained at small pile-up 

level 
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Backup: on determination of RE beam radius 
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• Post-disruption current profile is 
more peaked than pre-
disruption current with greater 
li=1.13 vs 0.86 

 

• Post-disruption relatively small 
RE current (180 kA) is found 
stable likely due to elevated q 
profile 
 

• RE plateau sustains as long as 
there is transformer flux to drive 
it (observed up to 1.5 s) 
 

• Peaking observed even for flat 
impurity profile 

 

Backup: RE current profile for hollow impurity profile 
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Backup: RE-driven plasma waves are detected via  

high-frequency measurements of magnetic signals 

[1] Watson and Heidbrink RSI 2003 
[2] Thome et al. RSI 2018 

• Energetic REs can lead to excitation 

of plasma waves (like fast ions)  

• Plasma waves can increase 

dissipation of REs 

• New paths to mitigate REs via 

kinetic instabilities can be 

potentially discovered 

• High-frequency fluctuations of 

toroidal magnetic field are 

detected by RF-diagnostic [1,2] 



A. Lvovskiy/TSDW/August 2019 1908-10746/ 77 

Backup: Even 1 G fluctuations can cause loss of only 

30+ MeV REs 

• Initial stable current profile is 
modified to obtain q0=0.8 at 
constant full current 
 

• Peaked current profile leads to 

strong ideal internal 1/1 kink 
mode according to MARS-F 
simulations 
 

• Weak edge modes support lack of 
external magnetic signals 

detected in experiment 
 

• Poloidal fluctuations even as large 
as 1 G lead to loss of only 30+ 
MeV REs 

 
• Both experiment and modelling 

show no effect of internal kink on 
RE loss and global confinement 
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Backup: Chirping in low frequency range causes 

strongest RE loss 

• Instabilities are observed in two 

distinct frequency ranges: 1−10 

MHz and 30−80 MHz 

 

• They are triggered at low plasma 

density and decelerating voltage 

 

• Low freq. chirping (1−3 MHz) 

causes the strongest magnetic 

fluctuations 

 

• Low freq. chirping (1−3 MHz) 

causes the strongest change of RE 

loss signal 
 

• Δf changes by 0.3−2.4 MHz on 0.1 

ms (local width) and 0.3-1.8 ms 

(full width) time scales 
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Backup: Operational space of MHD and kinetic 

instabilities 

kinetic 


