Runaway Generation in a Tokamak Plasma

Chris McDevitt

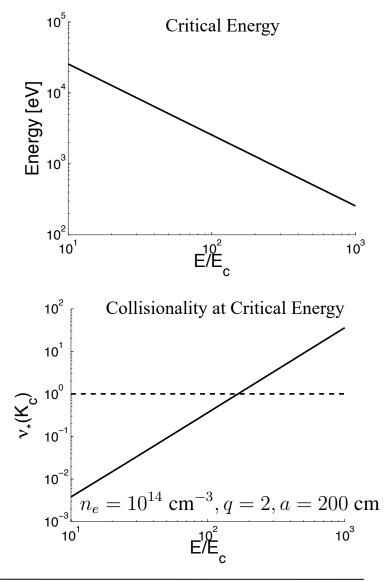
In collaboration with Xianzhu Tang

Los Alamos National Laboratory

Work supported by TDS & SCREAM SciDACs

Outline

- Runaway generation processes in the presence of large inductive electric fields in axisymmetric geometry
 - Four dimensional reconstruction of the Runaway Probability Function (RPF)
- Two example cases:
 - Dreicer production
 - Avalanche amplification
- Self-Consistent runaway formation in an axisymmetric plasma
 - Runaway formation during the current quench

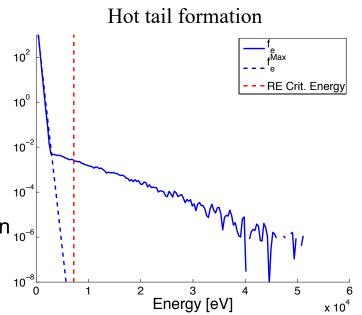


Motivation: Runaway Generation Processes in Tokamak Plasmas for Large Inductive Electric Fields

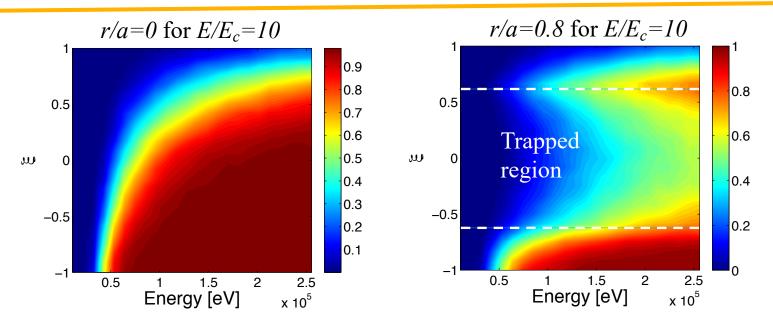
- Our intuition of how toroidal geometry impacts runaway generation is largely based on electron trapping
 - → Implies a reduction of runaway generation as the minor radius is increased [Rosenbluth-Putvinski 1997]
- The critical energy for an electron to run away in a hydrogen plasma can be approximated by:

$$\mathcal{K}_c \approx \left(\frac{m_e c^2}{2}\right) \left(\frac{E_c}{E}\right)$$

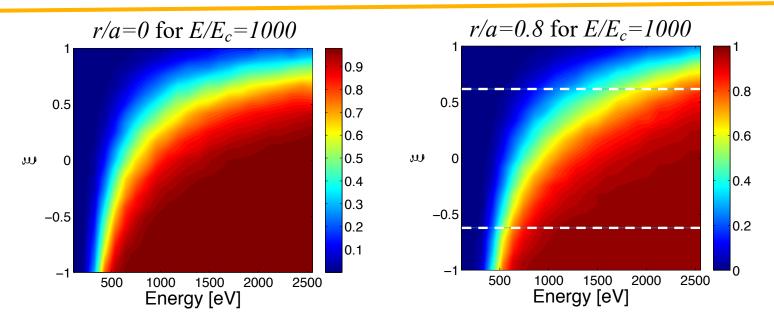
- For large electric fields this energy can be several hundred eV
 - Electrons at these modest energies are often characterized by $\nu_* \gg 1$



Drift Kinetic Description of Runaway Electrons

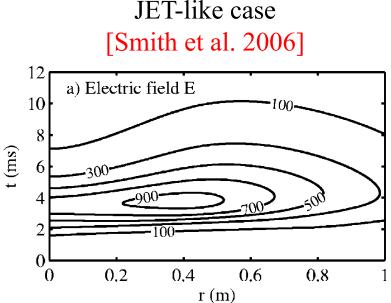

- Particle based guiding-center solver for 3D-2V runaway electron population [McDevitt et al. 2019] → does not require asymptotically small collisionality
 - Large-angle collisions described by a Möller source
 - Seed mechanisms (hot tail and Dreicer) incorporated via a variable weight scheme
 - Flux-surface averaged inductive electric field can 10⁻⁶ be evolved self-consistently
- Provides high physics fidelity description of:
 - Runaway seed formation
 - Avalanche amplification of initial seed population
 - Self-consistent evolution of flux-surface averaged inductive electric field

Runaway Probability Function in Toroidal Geometry: Weak Inductive Electric Field



- Interesting to contrast the runaway probability function (RPF) [Liu et al. 2016, Zhang et al. 2017] for r/a=0 and r/a=0.8
 - Radiation neglected here \rightarrow electrons accelerated to arbitrarily high energy are deemed runaways
 - Electrons that reach the thermal energy are deemed to not run away
- The RPF exhibits a strong local minimum at $\xi = 0$ for the off-axis case
 - Significantly reduces the efficiency of runaway generation at large minor radius

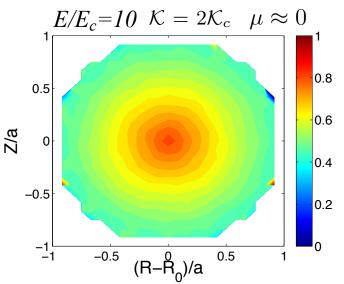
Runaway Probability Function in Toroidal Geometry: Strong Inductive Electric Field

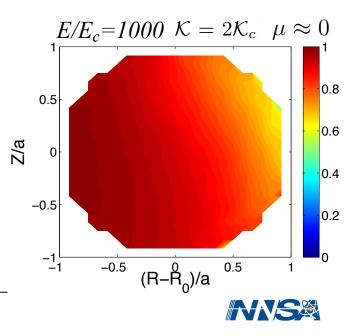

- For strong inductive electric fields, off-axis RPF no longer strongly reduced in "trapped" region
 - The large collisionality near the critical energy to run away prevents electrons from completing a bounce orbit
 - Impact of electron trapping is largely negated

Inductive Electric Field During a Tokamak Disruption

- The characteristic strength of the inductive electric field can be estimated based on the available poloidal flux [Boozer 2018]
- An ITER-like case with 75 V · s of poloidal flux and a 100 ms current decay implies an average loop voltage of 750 V
 - This implies $E/E_c \approx 380$ for n_e =10¹⁴ cm⁻³, T_e =10 eV, and $\ln \Lambda = 10$
- Maximum inductive electric field
 generally much larger

Runaway Electron Generation is Strongly Localized for Large Electric Fields


- For a large inductive electric field electrons can gain a significant amount of energy in a single toroidal transit
- Specifically, for an ITER-like case with an average loop voltage of $750~\mathrm{V}$
 - An electron can gain up to 750 eV during a single toroidal transit
 - The critical energy at this electric field is 670 eV
 - Electrons can more than double their energy in a single toroidal transit
 - For $q\gtrsim 1$, electrons can be accelerated before sampling the entire flux surface
- The inductive electric field in tokamak geometry scales as 1/R
 - Implies strong poloidal localization of runaway generation for large inductive electric fields



Runaway Probability Function in Configuration Space

- In the low collisionality limit and a modest inductive electric field $f_e = f_e(\gamma, \mu, \psi)$
- For large inductive electric fields the RPF is no longer a flux surface function $\Leftrightarrow (\gamma, \mu, R, Z)$
 - The strong in-out asymmetry results from $E_{\varphi} \propto 1/R$
 - A weaker up-down asymmetry results from helicity of magnetic field line
- RPF substantially increased across poloidal cross section for large inductive electric field
 - Significant increase in efficiency of all runaway generation processes

Parallel Electric Field in Axisymmetric Tokamak Geometry

• Incompressibility $\nabla \cdot \mathbf{j} = 0$, but $\nabla \cdot \mathbf{j}_{\perp} \neq 0$ implies [Helander-Sigmar]

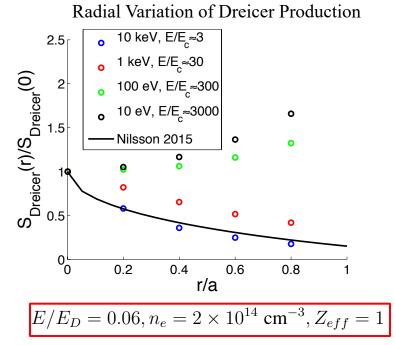
$$j_{\parallel} = -\frac{I\left(\psi\right)}{B}\frac{dp}{d\psi} + K\left(\psi\right)B$$

- For a low-beta poloidal plasma, $j_{\parallel}/B \approx K(\psi) \Leftarrow$ Flux surface function
- From Ohm's law

$$E_{\parallel} = \eta j_{\parallel} = \eta B\left(\frac{j_{\parallel}}{B}\right) \approx \eta BK\left(\psi\right)$$

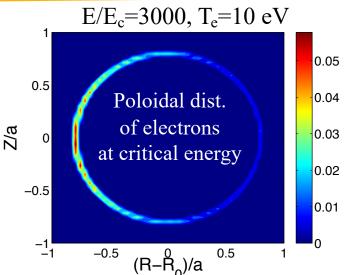
- In simplest limit $\eta = \eta \left(Z_{eff}, T_e \right) = \eta \left(\psi \right)$, $E_{\parallel} \propto B \propto 1/R$
- More complex cases possible for poloidally and toroidally localized impurity deposition ⇔ treat in future work

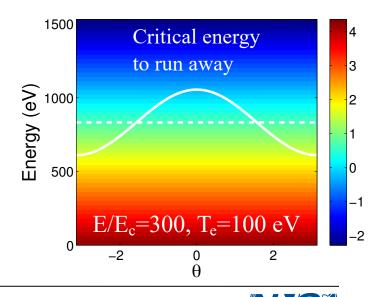
Outline


- Runaway generation processes in the presence of large inductive electric fields in axisymmetric geometry
 - Four dimensional reconstruction of the Runaway Probability Function (RPF)
- Two example cases:
 - Dreicer production
 - Avalanche amplification
- Self-Consistent runaway formation in an axisymmetric plasma
 - Runaway formation during the current quench

Dreicer Production in Tokamak Geometry

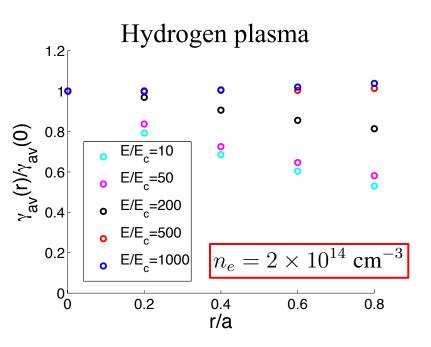
- Considering Dreicer production as a function of electric field strength
 - E/E_D held constant while the temperature is scanned
 - Noting $E/E_c = (m_e c^2/T_e) (E/E_D) \Leftrightarrow r$ esults in the strength of electric field being varied
- For modest values of the inductive electric field (high temperature) the results from Nilsson et al. 2015 are reproduced


- For large inductive electric fields (low temperature) the present results deviate qualitatively from previous predictions
 - Dreicer production more efficient at larger minor radii

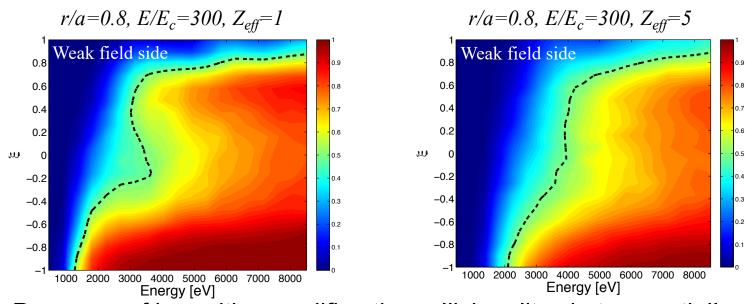


Runaway Distribution near Threshold Energy Strongly Asymmetric

- Noting the modulation of inductive electric field $E_{\varphi} \propto 1/R$
 - Runaway electrons more efficiently accelerated on inboard side
 - · Less efficiently on outboard side
- Poloidal modulation does not cancel:
 - Dreicer production depends nonlinearly on the electric field strength

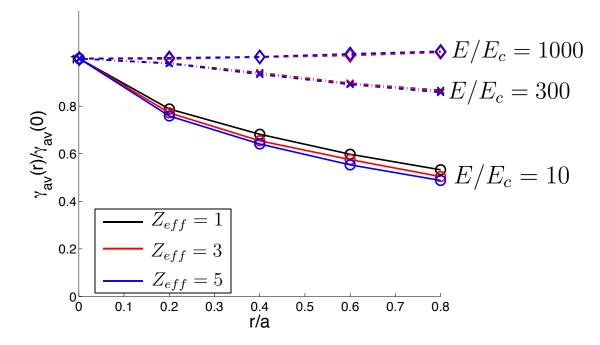


Avalanche Amplification for Large Electric Fields


- Related physics impacts avalanche amplification
- High collisionality at critical energy negates "neoclassical" reduction factor
- However, the avalanche growth rate is (approximately) linear with respect to the electric field:
 - 1/R modulation of inductive electric field will (nearly) cancel
 - Little to no increase expected at large minor radii for asymptotically large electric fields

Impact of Impurities on Runaway Probability Function

 Presence of impurities modifies the collisionality via two partially compensating trends


$$\nu_* \equiv \frac{\tau_{bounce}}{\tau_{detrap}} \propto n_e \left(Z_{eff} + 1 \right) \left(\frac{c}{v} \right)^4$$

- Critical energy to runaway increased
- Pitch-angle scattering more efficient at a given energy

Impact of Impurities on Avalanche Amplification

- Presence of impurities only modestly impact radial modulation of avalanche amplification factor
 - Amplification factor reduced as radius is increased for small E/E_c
 - Amplification factor approximately constant for large E/E_c

Outline

- Runaway generation processes in the presence of large inductive electric fields in axisymmetric geometry
 - Four dimensional reconstruction of the Runaway Probability Function (RPF)
- Two example cases:
 - Dreicer production
 - Avalanche amplification
- Self-Consistent runaway formation in an axisymmetric plasma
 - Runaway formation during the current quench

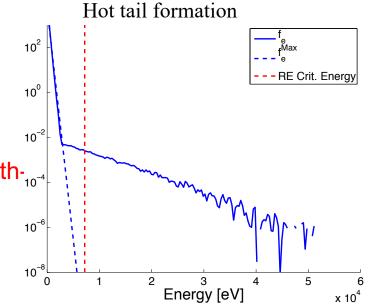
Runaway Electron Formation: Axisymmetric Plasma

- Interested in identifying the impact of the above physics on RE formation in an axisymmetric tokamak plasma
- Seek testbed for exploring coupling of RE to field evolution
- Incorporate accurate description of RE dynamics:
 - RE generation processes in toroidal geometry for arbitrary collisionality regimes
 - Spatial transport of RE for plasmas with large impurity content [McDevitt et al. 2019]
 - Finite orbit width effects
 - ...
- Allows for spatial profile of RE current to be determined
 - MHD stability of RE current carrying plasma

RE Generation during Current Quench

Will evolve flux surface averaged induction equation

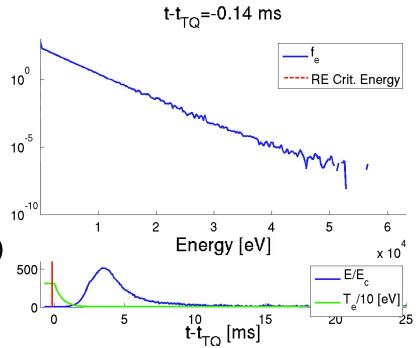
$$\nabla^2 \mathbf{E} = \mu_0 \frac{\partial \mathbf{j}}{\partial t}$$


 Along with a modified Ohm's law [Rosenbluth--10⁻⁴

 Putvinski 1997]:

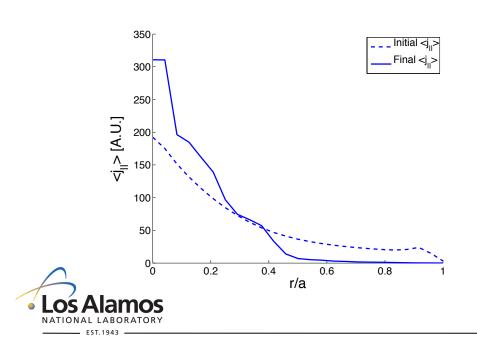
$$E_{\parallel} = \eta \left(j_{\parallel} - j_{RA} \right)$$

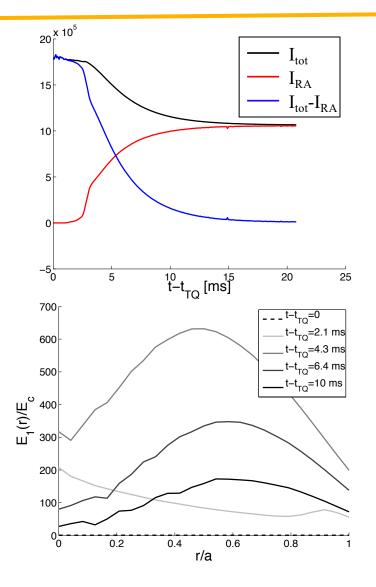
- j_{RA} evaluated from kinetic solution
 - Density and temperature profiles prescribed
- Incorporating seed mechanisms requires resolving both the tail and bulk plasma non-perturbatively
 - Variable weight scheme employed to improve resolution of tail population: marker particles split as they are accelerated
 - Only tail electrons fed back into field solve $\Leftrightarrow j_{RA}$



Current Transfer

- Runaway generation occurs in three distinct phases
- 1. Hot tail generation: $t-t_{TQ} = (1\text{ms}-2.3\text{ms})_{10}^{-5}$
 - Strongly non-Maxwellian solution due to rapid thermal quench
- 2. Dreicer generation: $t-t_{TQ}$ =(2.3ms-3ms)
 - Electric field directly accelerates electrons from thermal bulk
- 3. Avalanche amplification: $t-t_{TQ}$ =(3ms-15ms)
 - Seed population amplified until RE's overtake plasma current


- Assume JET like shot with a thermal quench of $\tau_{TQ}=0.5 ms$
 - Hydrogen plasma assumed



Profile Evolution during Current Quench

- Current plateau forms on a timescale of 15 ms
- Once the runaway beam forms, electric field drops
 - Hollow E-field profile forms due to peaked RE current profile

Summary

- Runaway probability function found to have a non-trivial structure in the 4-D phase space (γ, μ, R, Z)
 - Runaway distribution function is not well approximated as a flux surface function near critical energy to run away
- The efficiency of runaway generation processes found to be strongly modified in the limit of large inductive electric fields
 - Dreicer production rate is found to be enhanced at finite minor radii
 - Avalanche amplification found to be approximately constant in radius
- Runaway generation coupled to a self-consistently evolving inductive electric field in tokamak geometry
 - Provides high physics fidelity description of 2D-2V runaway electron phase space evolution
 - Future work aimed at incorporating a self-consistent collisional radiative model

