

www.cea.fr

3D non-linear MHD modelling of Massive Gas Injection (MGI) -triggered disruptions in JET

> E. Nardon, D. Hu, J. Artola, JOREK team, JET contributors

7th Theory and Simulation of Disruptions Workshop, Princeton, 5-7 July 2019 (presented remotely)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

The model

- Description of a typical simulation
- Mechanisms leading to the Thermal Quench (TQ)
- Physics of the TQ and I_p spike

The model

The JOREK model for MMI (i.e. MGI or SPI) simulations

Reduced MHD, no diamagnetic effects

8 variables:

- Poloidal magnetic flux $\,\psi\,$ (${f B}=F_0
 abla \phi+
 abla \psi imes
 abla \phi$)
- Toroidal current density $j = \Delta^* \psi$
- Electric/flow potential u■ Parallel velocity v_{\parallel} → $\mathbf{v} = v_{\parallel} \mathbf{B} R^2 \nabla u \times \nabla \phi$ (assumed common for all species)
- Vorticity $\omega = \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial u}{\partial R} \right) + \frac{\partial^2 u}{\partial Z^2}$
- Impurity mass density ho_{imp} (summed over all charge states)

- Total mass density (main ions + impurities) ρ

- **—** Temperature T, assumed common to all species
- Coronal equilibrium (CE) assumption provides charge state distribution, radiation losses, ionization energy (ADAS data)
 - Benchmark with M3D-C1 and NIMROD suggests that CE assumption slows down the radiative collapse

$$\begin{split} \text{Ohm's law} \quad & \frac{\partial \psi}{\partial t} = \eta \left(T_e \right) \Delta^* \psi - R \left\{ u, \psi \right\} - F_0 \frac{\partial u}{\partial \phi} \qquad (\texttt{+ hyper-resistivity}) \\ \text{Vorticity} \quad & R \nabla \cdot \left[R^2 \left(\rho \nabla_{pol} \frac{\partial u}{\partial t} + \nabla_{pol} u \frac{\partial \rho}{\partial t} \right) \right] = \frac{1}{2} \left\{ R^2 \left| \nabla_{pol} u \right|^2, R^2 \rho \right\} + \left\{ R^4 \rho \omega, u \right\} \\ & - R \nabla \cdot \left[R^2 \nabla_{pol} u \nabla \cdot (\rho \mathbf{v}) \right] + \left\{ \psi, j \right\} - \frac{F_0}{R} \frac{\partial j}{\partial \phi} \\ & + \left\{ P, R^2 \right\} + R \mu \left(T_e \right) \nabla_{pol}^2 \omega. \quad (\texttt{+ hyper-viscosity}) \end{split}$$

$$\text{// momentum} \quad B^{2} \frac{\partial}{\partial t} \left(\rho v_{\parallel} \right) = -\frac{1}{2} \rho \frac{F_{0}}{R^{2}} \frac{\partial}{\partial \phi} \left(v_{\parallel} B \right)^{2} - \frac{\rho}{2R} \left\{ B^{2} v_{\parallel}^{2}, \psi \right\} - \frac{F_{0}}{R^{2}} \frac{\partial P}{\partial \phi} + \frac{1}{R} \left\{ \psi, P \right\} \\ -B^{2} \nabla \cdot \left(\rho \mathbf{v} \right) v_{\parallel} + B^{2} \mu_{\parallel} \left(T_{e} \right) \nabla_{pol}^{2} v_{\parallel}.$$

$$\begin{array}{ll} \text{Mass conservation} \\ \text{(impurities)} \end{array} & \quad \frac{\partial}{\partial t} \rho_{imp} = -\nabla \cdot \left(\rho_{imp} \mathbf{v} \right) + \nabla \cdot \left(D_{imp} \nabla \rho_{imp} \right) + \underbrace{S_{imp}} \text{MGI/SPI} \end{array}$$

(all) $\frac{\partial}{\partial t}\rho = -\nabla \cdot (\rho \mathbf{v}) + \nabla \cdot [D_D \nabla (\rho - \rho_{imp})] + \nabla \cdot (D_{imp} \nabla \rho_{imp}) + S_D + S_{imp}$

Energy density
$$\frac{\partial P^*}{\partial t} + \nabla \cdot (\mathbf{v}P^*) = -(\gamma - 1) P \nabla \cdot \mathbf{v} + \frac{2}{3R^2} \eta (T_e) j^2 + \nabla \cdot \left(\kappa_{\perp} \nabla_{\perp} T + \kappa_{\parallel} \nabla_{\parallel} T\right)$$

where $P^* \equiv P + (2/3)n_{imp}E_{ion}$
 $-n_e n_{imp}P_{rad} (T_e) + \frac{\gamma - 1}{2} \mathbf{v} \cdot \mathbf{v} (S_D + S_{imp}).$

Description of a typical simulation

Simulated pulse: JET #85943

- Ohmic, 2MA, 3T, T_{e0}=3.3keV, n_{e0}=2.1x10¹⁹m⁻³
- Pure Ar MGI from Disruption Mitigation Valve 1 (DMV1) at 33 bar into a healthy plasma
- Simulation setup:
 - Time dependence of Ar source based on Euler equations, but P_{DMV} is reduced to account for fuelling efficiency <<100%</p>
 - Realistic (Spitzer) resistivity and (turbuent) viscosity & diffusivities (+ scans)
 - For numerical reasons, parallel flows are artificially damped

Initial state

(Poloidal cuts in the plane of DMV1)

2.70ms after gas arrival

Thin radiating ring → cold front → current profile contraction
 Growth of tearing modes (here m/n=3/1 island visible)

3.77ms after gas arrival

Growth of 2/1 modeSome stochasticity

3.86ms after gas arrival

- Thermal Quench (TQ) onset
- Stochastic region expands fast
- Heat flux conducted into region where n_{imp} is large \rightarrow large localized P_{rad} 11

4.08ms after gas arrival

Global stochasticity \rightarrow global T_e flattening (TQ)

4.54ms after gas arrival

After the TQ, flux surfaces start reappearing in the core

Mechanisms leading to the Thermal Quench (TQ)

A realistic wall is needed to reproduce the pre-TQ I_p evolution

Using a realistic resistive wall (red and magenta curves), the pre-TQ I_p drop is well matched

- Pre-TQ I_p drop ~independent of the gas amount (red vs. magenta)

- In contrast, an ideal wall close to the plasma (black curve) makes the pre-TQ I_p drop too large
- Consistent with theory [Artola et al., submitted]
 - Current lost in the edge is largely re-induced in the still hot plasma
 - The process does not depend on the timescale, only on geometry 16

Physics of the TQ and I_p spike

Context

Mechanism of the I_p spike [D. Biskamp, *Nonlinear MHD*]:

- \blacksquare MHD relaxation at TQ \rightarrow broadening of current profile
 - Detailed mechanism, according to A. Boozer [PPCF 2018 and NF 2019]: magnetic stochasticity connects regions with different j_{\parallel}/B \rightarrow excitation of shear Alfvén waves by $\nabla_{\parallel}(j_{\parallel}/B)$ term in vorticity equation \rightarrow redistribution (homogenization) of j_{\parallel}/B
- equation \rightarrow redistribution (homogenization) of j_{\parallel}/B **Conservation of magnetic helicity** $H \equiv \int \mathbf{A} \cdot \mathbf{B} \, dV \rightarrow \mathbf{I}_p$ has to increase
- Can be modelled in 2D via hyper-resistivity (mean field model)
 - Done in JOREK by Javier Artola
- In the past, 3D non-linear MHD simulations always underestimated the Ip spike (as far as I know)
 - \Rightarrow MHD relaxation not well captured?
 - ⇒ Unreliable predictions on electron stochastic losses (which play an important role in runaway electron generation)?

This year, got first JOREK simulations with an I_p spike comparable to experimental data

- Even larger in certain cases!
- Large I_p spike associated to violent MHD activity and small scale excitation across the whole plasma (see simulation in next slide)
 - Could well be Alfvén waves turbulence

What determines the I_p spike height?

Unfortunately, no clear-cut conclusions yet...

- Simulations take weeks and many fail during the TQ
- However, based on existing simulations, my *impression* is that:
 - The I_p spike height correlates with the amplitude of the low n modes (m/n=2/1, 3/2, ...)
 - ...which correlates with the sharpness of the skin current generated by the cold front
 - ...which correlates with
 - the Lundquist number used in the simulation
 - the « abruptness » of the radiative collapse
 - In fact, JOREK simulations with the largest I_p spikes had a bug in the call to ADAS routines, making the radiative cooling rate artificially large
 - Now that the bug is solved, the I_p spike is smaller than in the experiment again (but the radiative collapse may be too slow due to the coronal eq. assumption...)

Testing Boozer's formula

Boozer provides a « heuristic » formula connecting the hyper-resistivity (Λ_m) of the 2D mean field model to the field lines diffusion coefficient $(D_{FL} \sim \Psi_t^2/N_t)$ of the 3D system [A. Boozer, PPCF 61 (2018) 024002]:

$$\Lambda_m \approx \frac{1}{144} \frac{2\kappa_0}{1+\kappa_0^2} \frac{\mu_0}{4\pi} \frac{V_A^2 \Psi_t^2}{N_t}$$

 $(\Psi_t \equiv \text{radial extent of stochastic region in toroidal flux units})$ $N_t \equiv \text{number of toroidal turns for a field line to travel across this region})$

- Analogous to Rechester-Rosenbluth formula but for magnetic helicity diffusion instead of heat diffusion
- Could allow extracting an estimate of D_{FL} from I_p(t) experimental data, with no need for 3D simulations!
- \rightarrow Use JOREK simulations to test Boozer's formula

- Idea: run 2D « mean field model » simulations and look for hyperresistivity settings which allow matching 3D simulations
- Parameterization of hyper-resistivity: $\Lambda_m = \Lambda_{m0}(1 + \tanh((\Psi_N \Psi_{N,cut})/0.01))/2$ In principle, $\Psi_{N,cut} \leftrightarrow$ edge of the stochastic region

Good match to 3D simulation for $\Psi_{N,cut} = 0.87$ and $\Lambda_{m0} = 2.5 \times 10^{-6}$

Boozer's formula converted into JOREK units reads: $\Lambda_{m0} = 2 \times 10^{-5} / N_t$

 \Rightarrow Estimate N_t from field line tracing in 3D simulation

Crude method: initialize many field lines at $\Psi_N^{1/2}=0.4$, track them and plot their radial position vs. number of turns (here at t=4.654ms)

 \Rightarrow By eye, N_t ~ 3 \rightarrow Λ_{m0} ~ 7x10^{-6}, to be compared to 2.5x10^{-6} found in previous slide

 \Rightarrow Order of magnitude seems OK

Conclusion

Conclusion

JOREK simulations suggest the following picture for MGI-triggered disruptions:

(Note: role of the 1/1 mode still to be clarified)

- The above picture seems to apply (to some extent) to SPI as well
- The height of the I_p spike gives information on the « intensity » of the whole process

Too small a spike likely indicates underestimated stochasticity

Preliminary investigations of Boozer's formula are promising

Interferometry comparison

About the choice of resistivity η_0 and hyper-resistivity η_H $\partial_t \Psi = \dots + \eta_0 (T/T_0)^{-3/2} j_{\phi} + \eta_H \Delta j_{\phi}$ For numerical stability

Current density profile (axisymmetric Ar MGI simulations)

- Larger $\eta_0 \rightarrow$ smoother skin current \rightarrow milder MHD and TQ
- ⇒ Need to use a realistic η_0 , at least in the pre-TQ phase
- η_H=10⁻¹⁰ smooths profile w/o affecting skin current much
- Consequences on fine structures during
 TQ are uncertain...

Preliminary Current Quench (CQ) investigations

- Almost all simulations stop converging at some point during the TQ
- However, it is easy and interesting to prolong a TQ simulation in axisymmetric mode
- Here, a large perpendicular heat diffusivity is used
 - Mimics end of TQ
 - Otherwise, localized current sheets (which seem related to local maxima in L_{rad}(T))
- Also, need to add impurities in the core, otherwise no radiative collapse (the core even re-heats due to Ohmic heating)

- I_p decay rate increases with amount of impurities
- When the experimental I_p decay rate is matched (« 7.5 bar » case), P_{rad} is also matched

No surprise because $P_{rad} = P_{Ohm} \sim d(I_p^2)/dt$ during CQ

Spiky P_{rad} in simulations related to treatment of radiation at very low T (sharp cut-off under a certain T, ...)

