

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The effect of high-Z material injection on runaway electron dynamics

G. Papp¹, G. Pautasso¹, J. Decker²; L. Hesslow⁵, M. Hoppe⁵; M. Bernert¹, P. Blanchard², A. Bock¹, T. Bolzonella⁸, L. Calacci³, D. Carnevale³, M. Cavedon¹, J. Cerovsky⁴, D. Choi², S. Coda², P. David¹, M. Dibon¹, M. Dunne¹, B. Duval², R. Dux¹,
O. Embréus⁵, B. Erdős⁶, M. Farnik⁴, M. Faitsch¹, O. Ficker⁴, R. Fischer¹, C. Fuchs¹, M. Gobbin⁸, C. Galperti², L. Giannone¹,
A. Gude¹, M. Iliasova¹³, K. Insulander Björk⁵, F. Janky¹, E. Khilkevitch¹³, O. Kudlacek¹, B. Labit², A. Lier¹,
O. Linder¹, T. Lunt¹, E. Macusova⁴, M. Maraschek¹, L. Marrelli⁸, P. Marmillod², P.J. McCarthy¹⁰, J. Mlyar⁴, A. Mlynek¹,
A. dal Molin¹¹, M. Nocente¹¹, E. Panontin¹¹, U. Plank¹, G.I. Pokol⁶, V.V. Plyusnin¹², D. Rigamonti¹¹, O. Sauter², B. Sieglin¹,
U. Sheikh², A. Shevelev¹³, W. Suttrop¹, G. Tardini¹, M. Tardocchi¹¹, D. Testa², M. Teschke¹,W. Treutterer¹, L. Unnerfelt⁵,
M. Valisa⁸, O. Vallhagen⁵, the ASDEX Upgrade Team^{1,*}, the TCV Team^{2,**}, the EUROfusion MST1 Team^{***}

¹Max-Planck-Institute for Plasma Physics, Garching, Germany;
²Swiss Plasma Centre, EPFL, Lausanne, Switzerland;
³Universita di Roma "Tor Vergata", Italy;
⁴Institute of Plasma Physics AS CR, Prague, Czech Republic;
⁵Chalmers University of Technology, Göteborg, Sweden;
⁶Institute of Nuclear Techniques, BME, Budapest, Hungary;
⁷ENEA sulla Fusione, C.R. Frascati, Italy;
⁸Consorzio RFX, Padova, Italy;

¹⁰Department of Physics, University College Cork, Cork, Ireland;

- ¹¹Universita di Milano-Bicocca, Milano, Italy;
- ¹²Instituto de Plasmas e Fusao Nuclear, IST, Universidade de Lisboa, Portugal;
- ¹³Ioffe Physical-Technical Institute (RAS), St. Petersburg, Russia;
- *See the author list of "H. Meyer et al 2019 Nucl. Fusion accepted <u>10.1088/1741-4326/ab18b8</u>"
- **See the author list of "S. Coda et al 2019 Nucl. Fusion accepted <u>10.1088/1741-4326/ab25cb</u>"
- *** See the author list of "B. Labit et al 2019 Nucl. Fusion accepted 10.1088/1741-4326/ab2211"

- In plasmas, the friction force is a nonmonotonic function of energy
- If E > E_c (critical field), runaway acceleration can happen

- Dreicer: Velocity space diffusion (E, n_e, T_e)
- Hot-tail: Cooling tail of distribution (Te & cooling rate)
- Tritium decay, Compton generation for reactors
- Avalanche: knock-on collisions with thermals (E, n_e)

Disruptions and runaway electrons

- Disruptions: quick cooling of the plasma (*thermal quench* - TQ)
- Current quench (CQ) as the conductivity is decreased (σ ~ T^{3/2})
 - Ip cannot drop arbitrarily fast toroidal electric field is induced
- Massive material injection to handle forces & heat loads
- Nava ~ exp{lp}
- On large machines (e.g. ITER) even a small seed could avalanche into several MA-s of RE current
 - Risk to plasma facing components [Hollmann PoP 2015, Lehnen JNM 2015, Matthews Phys. Scr. 2016, etc.]

"The biggest challenge: avoid runaway electron formation when mitigating heat loads and forces" [Lehnen EPS 2017]

2019-AUG-05 7th TSDW // High-Z & runaways Gergely Papp

3 / 18

- We have to rely on theory predictions for ITER
- Goal: better understand RE dynamics following high-Z MMI, and provide datasets for model validation
- MST allows multi-machine studies for theory comparison
 - ⇒ COMPASS ⇒ TCV ⇒ AUG ⇒ JET
- 1. Global parameters: Density, (temperature,) shaping, q, ...
- 2. Impact of high-Z materials on RE dissipation & generation
 - Experimental validation of [Hesslow] quantum-kinetic model
 - RE suppression by deuterium admixture
- 3. Runaway distribution measurements & simulations
 - Hard X-ray (Bremsstrahlung) & synchrotron emission

- Goal: better understand RE dynamics following high-Z MMI, and provide datasets for model validation
- Disruption triggered with MGI of argon / neon / krypton (reproducible)
- Different scenarios developed on AUG and TCV:

100	I_P [kA]	B_T [T]	q_{95}	$\langle n_e \rangle \; [\mathrm{m}^{-3}]$	$T_e^0 \; [\text{keV}]$	$N_{ m MGI}$	and a	κ
AUG	800	2.5	> 3	$\sim 3 \cdot 10^{19}$	~10	$[0.2 - 4.8] \cdot 10^{21}$	Ar	1.1
TCV	200	1.4	> 2	$\sim 2 \cdot 10^{18}$	~1	$[3-4] \cdot 10^{19}$	Ne	<1.5

- Machines complement eachother (different parameter ranges)
- Typical RE currents of 200-400 kA, up to 650 ms plateau length
 - Good position & OH control of the beam, safe operation
 - TCV: seemingly full conversion of Ohmic to RE current
 - ➡ Max RE energy ~25 MeV
- No isotope effect: RE dynamics in H, D and He plasmas is comparable

[Papp IAEA-FEC 2016, Pautasso PPCF 2017, Coda NF 2017, Gobbin PPCF 2018, Carnevale PPCF 2018, Nocente RSI 2018, Pautasso PPCF 2019, Decker NF 2019, etc]

EPFL TCV: RE beam formation vs pre-MGI density

- TCV: RE beam formation requires $n_{e,0} \le 1.0 \times 10^{19} \text{ m}^{-3}$
- Role of pre-MGI RE seed
- Unique scenario
- Threshold effect valuable for kinetic model validation [e.g. LUKE+METIS]

Gergely Papp

2019-AUG-05 7th TSDW // High-Z & runaways

- Most runaway experiments are done in circular plasmas
 - Shaping poses a control challenge (VDE)
 - Reactor plasmas are expected to be shaped
- TCV: RE beam control obtained up to k ~ 1.5
 - Challenge: post-disruption stabilization [Carnevale PPCF 2018]
 - No obvious kinetic / MHD effect found
- Is there an optimal MGI position?
 - At low gas flow rates, injection at z ~ a/2 seems most efficient
 - If the gas flow rate is high, no impact of vertical position

AUG: q95 dependence

- AUG: q₉₅ > 3 threshold not yet understood
 - Exists in a wide range of I_p (0.7-1.2 MA) & B_t (1.6-2.9 T), scanning around the q₉₅ = 3 threshold
 To be studied by MHD modeling [e.g. JOREK]
- TCV: RE beam creation is insensitive to q₉₅ > 2
 ➡ No q₉₅ threshold on JET [Plyusnin P4.1046]

Avalanche - what can MSTs contribute?

Avalanche in MSTs

© Elliott Erwitt: "Dogs", New York, USA. 1974

Avalanche

in ITER

>10⁶ larger

IPP

2019-AUG-05 7th TSDW // High-Z & runaways Gergely Papp

IP EPFL Runaway interaction with high-Z material

2019-AUG-05 7th TSDW // High-Z & runaways

Runaway dissipation by high-Z material

250

200

plasma current

- 1st MGI to trigger RE beam followed by dissipation
 - → Avalanche dominates decay stage, E ~ E_{c,eff} [Breizman NF 2014]
- Extended range: 2nd injection into a formed beam
 - Can lead to full suppression of RE beam
- Compare decay rate with theory

Scan gases & quantity

2019-AUG-05 7th TSDW // High-Z & runaways

s Gergely Papp

1st MGI

61096: Neor

61124: Argon

EPFL Experimental comparison of RE damping

- Comparison is based on [Hesslow PPCF 2018]
- AUG 1st: analyse right after CQ, before control system action.
 nz assuming ~60% in interaction with REs (1st injection).
- AUG 2nd: assuming ~10% assimilation into beam volume.
- TCV: dl_{OH}/dt = 0 ⇒ measure dl/dt in the entire plateau.
 n_Z / n_e from increase in n_e.

- Interaction of REs with bound electrons
 - Increases the collisional drag & scattering of REs
 - → BUT: provides more electrons to avalanche scatter!
- At large currents (ITER), the high-Z material can even increase RE generation! [Hesslow NF 2019]
- Possible to counteract with D₂ **ITER-like case - [Hesslow NF 2019]** 45 10²¹ 20\15 admixture [Martin-Solis NF 2017] 20 25 40 35 [m⁻³] 10²⁰ In experiments? 10¹⁹ 35 NZ b c c c log₁₀(n_{RE} /n seed) 10¹⁸ Kinetic simulations (CODE) (a) Ne, 5 eV (b) Ar, 5 eV 10¹⁷ Hesslow NF 2019 10²¹ Martin-Solis NF 2017 15 10 10 [[ms⁻¹] 20 15 Rosenbluth-Putvinski 20 25 10²⁰ [m⁻³] 25 20 10¹⁹ nz 15 10¹⁸ (\mathbf{C}) (d) Ne, 10 eV Ar, 10 eV 10¹⁷ 10 0 10²¹ 10²¹ 40 60 80 100 20 10²²10²⁰ 10^{20} 1022 [V/m] $n_{D} [m^{-3}]$ E $n_{\rm D} [m^{-3}]$

Argon + deuterium mixture injections suppress REs

Argon + deuterium mixture injections

➡ Extra density expected to mitigate RE generation➡ 50/50 (1:1) partial-, 20/80 (1:4) full suppression

- Model comparison: "basic" GO [Papp NF 2013] vs GO with updated avalanche growth rates [Hesslow 2019 NF] +CODE-based neural network for Dreicer generation
- ➡ Future work for ASTRA-STRAHL+RE [Linder P4.1034]

2019-AUG-05 7th TSDW // High-Z & runaways

- Full-f kinetic simulation of the complete CQ cycle
 - → Using CODE [Stahl NF 2016] with high-Z interaction
 - Plasma parameters taken directly from the experiment
 - Self-consistent electric field evolution
- Enables comparison with distribution measurements [HXR: Nocente I1.103, RSI 2018] [Synchr.: Hoppe EFTC 2019]

Reconnection in the RE beam

- m/n=1/1 reconnection event is sometimes observed in the RE beam stage [Pautasso PPCF 2019, Hoppe EFTC 2019]
- Sudden change in synchrotron spot shape
 - Oval to crescent in < 1ms</p>
- Indication of change in the runaway distribution
 - But which aspect?

Reconnection in the RE beam

AUG, t = 1.029s

AUG, t = 1.030s

Gergely Papp

17 / 18

- SOFT [Hoppe NF 2018] forward modeling of synch. emission "Superparticle" energy + pitch distribution
- Good qualitative match found
 - Current profile flattening explains the spot shape change

Estimate of RE beam size

2019-AUG-05

7th TSDW // High-Z & runaways

Summary

- ITER & beyond needs reliable & robust RE physics model validated with experimental data
- AUG & TCV: datasets provided on parameter scalings
 - Isotope, density, shaping, temperature, q95, wide range of type & quantity of MMI material, etc
- Reduced models useful for large-scale parameter scans, but further development is necessary
 - ➡ Penetration of neutrals, 2D/3D effects, MHD, ...
- QM+kinetic models well describe the interaction of relativistic electrons and partially ionized high-Z impurities
 Higher level modeling provides insight into distribution
- Future: aid the development of non-MGI DM systems, such as Shattered Pellet Injection

AUG SPI plans

- ITER-IPP collaboration to install SPI on AUG in 2020/21
 - ➡ Goal: Test different shattering angles on the plasma
 - Tight timeline: ~2y long shutdown planned for upper divertor installation in ~late 2021, have to finish SPI project before
- 3(+1?) shattered tubes planned, shatter angles not yet decided
 - ⇒ 3-view fast video system (toroidal, upper, radial)
 - Upgraded bolometry (diodes & foils in 5 sectors)
- Experiments & analysis is expected in broader teamwork

AUG SPI plans

2019-AUG-05 7th TSDW // High-Z & runaways

AUG SPI plans

2019-AUG-05 7th TSDW // High-Z & runaways