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ITER's Baseline Strategy for RE Mitigation
Is Raising the Density (Collisional Dissipation)

Scientific validation of DMS requirements

Baseline concept:

— dissipating thermal and magnetic energy through line radiation
— preventing runaway electron formation by increasing the density

Baseline technique:

— Injection of Ne, Ar and D, through Shattered Pellet Injection

Assumption:

Assimilated density scales
with number of injectors
... dll the way to the critical
density for RE dissipation

Will nature be this kind?
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RE Mitigation via Collisional Dissipation

Not Projected to Succeed in ITER (RE Avoidance TBD)

Fatal Flaw #1: Assimilation Saturation Fatal Flaw #2: VDE Dynamics
Dissipation vs Ar injected RE energy deposited to wall
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Is there a plan B?

Plan A:
High-Z Injection

Plan B:
Applied

Waves or
DC Fields

** OR BOTH?
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Background: Inclusion of Kinetic Instability Improves

Agreement of Bremsstrahlung with Modeling

165826 ' ]
Experiment
« Slope of distribution better matched 2
when kinetic instability included 3 model |
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Antenna Reveals Kinetic Instabilities at ~100 MHz

Intensity Proportional to # REs
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 Instabilities were robustly
present above critical RE
intensity

— Got stronger with more REs

%00 5.100 5.130

5.025 5.050 5.075

Time [s]

OBt =14Tramp-down| @
-3 |{BBt=1.6 T ramp-up o

25 20 -15 -1.0 -05
RE Bremsstrahlung Emission

D”’?p Paz-Soldan/PPPL/08-2019 (|Og1o HXR Flux ,a.u.)
D. Spong et al, PRL 2018

Antenna Signal
(log1o 125-200 MHz, a.u.)
On



Previous Results were in Collisionless “QRE” Regime

... Kinetic Instability Favors Collisionless Bulk Plasmas
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Naturally Excited Kinetic Instabilities Now Observed in
Many Phases of Post-Disruption Evolution

Frequency [MHz]
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Naturally Excited Kinetic Instabilities Now Observed in

Many Phases of Post-Disruption Evolution

#175776
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Naturally Excited Kinetic Instabilities Now Observed in

Many Phases of Post-Disruption Evolution
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Today I'll describe a few nascent activities @ DIlI-D on

RE mitigation and avoidance with waves / 3D fields
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o Avoidance o Mitigation
Alfvenic Modes Whistler Modes
Passive Coils
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Mechanism of Instability/Wave/3D Effect on REs

Depends on their Frequency w.r.t. Transit Frequency
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Seminar Outline

Infroduction and Motivation
— Injection-based RE control methods have possible fatal flaws
— Magnetic-field based approaches unjustifiably neglected

Limit Maximum RE Energy with Whistler Modes

Deconfine REs with Lab-Frame 3D Fields

Deconfine REs with Alfvenic Modes

Conclusion
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RE Mitigation Scheme: Externally Applied Whistler

Waves Predicted to Limit Maximum RE Energy

* Modeling predicts applied waves
of the right @,k enhances RE pitch-
angle scattering

— Synchrotron then drains RE energy

—_
O
- Same mechanism as self-excited £
whistlers in DIlI-D experiments o
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Wave-driven RE “Energy Wall” provides path for

RE mitigation at constant IP

Advantages to less RE energy @ 22 1 Me\f/
constant IP: urren

Carriers 10s MeV
- VDE rate slowed down as IP-
dot is minimal

— More time for wave to act
— Less energy at wall strike (2)

—1.U
—0.2;

~0.4

- Penetrating fraction of RE
population is eliminated ~0.6

— Only surface melting?

_0.8_

« High RE current means kink 0

. . . 1o s /mc
likely -> conversion inhibited? P

Modeling needed to assess if most optimistic outcome is a win
-> (assume ad-hoc perfect energy wall)
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DIlI-D Helicon antenna will be used for a proof-of-

principle test in FY2020 run (Torkil Jensen Award)

. Shrink ga
* QRE scenarios are well svited to — for wafe P
targeted study of helicon effect on =/ "\ access
distribution function N
- Calculations in progress to see if :
480 MHz is decent o,k
* Phase 1: can we predict effect of i
existing wave actuator i .
«  Phase 2: Optimization for best o,k |
Helicon antenna will be ready for 2020 ' | :
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Accessibility issues need to be considered

... together with effect of “companion plasma”

- Wave must couple across large JET
gap & uncertain SOL conditions
— Possible fatal flaw for fechnique , ¢
- JET finds dense “companion
plasma” exists (C. Reux et al) 77T Y
— Gas quantity sets companion ne 1—; v
— Should allow waves to couple f i '-|
OT‘\\ ’f" .\OQ. ;""
ekt &

oLl "1 '
20 25 30 35
R (m)
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Seminar Outline

Infroduction and Motivation

Limit Maximum RE Energy with Whistler Modes

— Could be a way out of mitigation quagmire (less energy per MA)
— Potential of Helicon antenna in DIII-D will be tested in FY20 run

Deconfine REs with Lab-Frame 3D Fields

Deconfine REs with Alfvenic Modes

Conclusion
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Large 3D Fields (from MHD instability) observed

to prompitly kill RE beam without regeneration

« Accessed low q conditions 6 v Inteﬁp_giiate = EFIT|-
via ~ 1 MA RE beam in DIII-D st 1® |® 0 o JAT
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Disruption Diw}f
- Required 6B around 1 kG 03 I, (MA) , |
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Orbit Following in MARS-F Predicted Mode Structure

Used to Determine the Critical 6B for RE termination
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Orbit Following in MARS-F Predicted Mode Structure

Used to Determine the Critical 6B for RE termination

Regular RMPs coills are far 1oo
weak to have this effect

Ovutward drift Inward drift
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1! (log4p G)
0 L
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RE de-confinement via passive in-vessel winding

“RE killer coil” under study using these same tools

 Principle: disruption-induced
voltage drives current through
an in-vessel winding
— “Spark-gap” prevents current
during normal operation

— Currents are far in excess of a
regular RMP caill

Currents

| Ohm

- Goal: optimize configuration
and assess feasibility of s
demonstration at DIII-D

Current (MA)

* Too late for ITER 05
— (unless it has no choice?)

\

0 0.01 0.02 0.03 0.04
t(s)

Smith, Boozer, Helander, PoP 2013
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Already Observed RE Seed Suppression with Naturally

Excited Compressional Alfven Eigenmodes?

- Avoided RE plateaus correlate -2
with intense & coherent MHz- go.s
frequency modes S04 Yesploleay
. . = T 71 #177028: 50 torr-l Ar
— Candidate: compressionadl | #177030: 130 tor1 Ar w
Alfven wave driven by REs 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ =
#177028 - No Pleateau §
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=P g
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Q =
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Already Observed RE Seed Suppression with Naturally

Excited Compressional Alfven Eigenmodes?

- Avoided RE plateaus correlate
with intense & coherent MHz-

frequency modes 1 | |
— Candidate: compressional B No plateau
Alfven wave driven by REs ¢ RE plateau B 0
2> o "
- Offers candidate explanation 5 S O
for counter-intuitive RE B @ ’. ¢ ol
formation thresholds £ ?,
Q- More Ar Higher Ip
< —
? ] tion ? ' ' ' '
Correlation or Causatio 0 1 5 5 . 3 9
max RE Energy [MeV]
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CQ mode dynamics change across critical BT for RE

formation - persistent modes appear at low BT

At high BT modes are short and
incoherent

(8]

#178321

Bt=2.15T ]
Ip=0.7 MA  Atlow BT modes persist and

correlate with additional RE loss

w h
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Initiative Started at DIII-D to Assess Feasibility of

~ 1 MHz-wave Launch with Mothballed ICRF Antennas

« Transfer function of existing
waveguides OK @ ~ 1 MHz

v Any needed work can be
done far from tokamak pit

- Low power antenna loading
experiments planned in June

— Low power MHz source in-hand

« AORSA modeling activity also
planned w/ PPPL collaborators

— Investigate accessibility issues

- Frequency is AM radio band
— Sources should be cheap (¢9)

~pm! !A 7£ Paz-Soldan/PPPL/08-2019) -
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AORSA fast wave simulations for RE-driven CAEs Initiated

4 A
. .
§.3
o
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o
- ]
- : = : ||
0 = = b N . ]
705 710 715
Time [ms]
- Frequency scan for a DIlI-D scenario
@710 ms
~ 0.25-1 MHz — ,.’
_ nd) =] "

n.= CONST.=4.8x10"" m-3
T. = CONST. = 2 eV (cold plasma)
Plasma species: eleciron and D

—
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Conclusion: Several Approaches Exist for Evaluation

Infroduction and Motivation

— Injection-based RE control methods have possible fatal flaws
— Magnetic-field based approaches unjustifiably neglected
Limit Maximum RE Energy with Whistler Modes

— Whistlers predicted to affect RE dynamics in QRE regime

— Potential of Helicon antenna in DIII-D will be tested in FY20 run
Deconfine REs with Lab-Frame 3D Fields

— Current-driven kinks provide proof-of-principle & model validation
— Potential of passive coil implementation in DIII-D under study
Deconfine REs with Alfvenic Modes

— Correlation of RE plateau failure with CAEs —> Causation?

— Potential of ICRF antennas in DIII-D under study

All help appreciated !
Particularly modeling these control scenarios !
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DISCLAIMER

This material is based upon work supported by the U.S. Depariment
of Energy, Office of Science, Office of Fusion Energy Sciences, using
the DIII-D National Fusion Facility, a DOE Office of Science user
facility, under Awards DE-FC02-04ER54698. DIII-D data shown in this
paper can be obtained in dI%ITCH format by following the links

at hitps://fusion.gat.com/global/D3D DMP.

Disclaimer: This report was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by frade name, frademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the Unifed States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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Bonus Slides

D’ ’ ' -D Paz-Soldan/PPPL/08-2019

NATIONAL FUSION FACRITY
37



Non-Material Injection DMS Sirategies (B-fields/Waves)

Called out as Priority 1 Research Need for ITER

Ref. System/ Issue Required R&D Category*
SPI-single injector. Optimization of shard size, velocity, amount, gas vs.
Pellet injection optimization for RE shard fraction, composition (D + impurity) to achieve
Al avoidance (incl. TQ and CQ mitigation) RE avoidance with optimum TQ, CQ (incl. wall loads) 1
SPI-single injector Determination of feasibility to dissipate the energy of
A2 demonstration for runaway mitigation formed runaway beams (amount, assimilation) and to 1
improve scheme
SPI-multiple injections Determination of effectiveness of multiple injections to
achieve RE avoidance with optimum TQ, CQ (incl. wall
A3 loads) compared to single injections (incl. timing 1
requirements)
SPI-multiple injectors Determination of effectiveness of multiple injection
from different spatial locations to achieve RE
A4 avoidance with optimum TQ, CQ (incl. wall loads) 1
DMS — alternative injections techniques |Demonstration of the feasibility of the technique to
A5 inject material in a tokamak and comparison of 1
mitigation efficiency with SPI
DMS - alternative disruption Exploration of disruption mitigation by
A.6  |mitigation strategies schemes other than massive injection of D2 1
and high Z impurities
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NATIONAL FUSION FAORITY
38

Paz-Soldan/PPPL/08-2019




Abstract

Recent DIlI-D experimental results motivate a serious assessment of the applicability of non-
axisymmetric magnetic fields to mitigate runaway electrons (REs) in ITER and beyond. Such
magnetic fields can originate from intrinsic instabilities or external actuators such as antennas
or coils. This presentation will summarize several recent DIlI-D examples of magnetic-field
driven RE avoidance and mitigation as well as summarize ongoing research activities to
explore external drive of similar perturbation fields.

Starting at the high frequency extreme, recent observations and modeling in the quiescent
regime support the view that RE-driven kinetic instabilities in the 0.1 - 10s GHz range drive
significant RE dissipation via wave-enhanced pitch-angle scattering. Planned proof-of-
Frinciple experiments in the quiescent regime to utilize the new DIII-D 1 MW 0.48 GHz system
o externally drive similar enhanced scattering will be described.

Moving to lower frequency, recent empirical observations support the view that RE-driven
kinetic instabilities in the MHz range (likely compressional Alfven Eigenmodes, CAEs) drive
significant RE loss during the current quench. Instability power is correlated with the failure of
RE plateau formation, with CAE modes bein? strongest at high current and low injected Ar
quantity. Modeling and experimental activities exploring the potential for active launch in the
MHz range using DIlI- D’s ICRF antennas will be described.

Instabilities at zero-frequency, namely current driven kinks, have been observed to
completely terminate the RE beam at a critical amplitude. This amplitude, about delta-B/B of
1%, is consistent with MHD modeling and RE orbit following using the MARS-F code. Using this
same technique the existing DIII-D 3D field coil sets are found to be far too weak to de-
confine a significant number of REs. These studies provide a firm physical basis for specifying
passive RE mitigation coil requirements and ongoing efforts in this direction will be described.
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