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Runaway mitigation issues

* SPI (shattered pellet injection) is the primary
runaway dissipation method approved for ITER

— Successtul on DIII-D, to be tested on JET in September

e Both runaway generation and dissipation can
drive instabilities via of, naway/0 E > 0, anisotropy

- Whistler waves
— Alfvén waves (shear/compressional)
- Fan instabllity

 Modeling + experiments needed 1o understand
which mechanisms are most active => [TER
predictions

— Collisions with screened impurities, neutrals,
synchrotron/Bremsstrahlung radiation, wave particle

Interactions
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Runaway conirol/modeling regimes include:

 Formation: prediction of runaway source
— Disruption prediction/modeling
— Runaway generation/acceleration
— Collisional and synchrotron losses
— Avalanche effects

 Suppression/dissipation strategy
- Runaway interaction with SPI ablation cloud

— Collisional effects, impurities, screening,
synchrotron/Bremsstrahlung losses, etc.

— Ohmic and inductive field acceleration

— Interaction with electromagnetic waves, MHD, field line
stochasticity

* For this talk we focus on the dissipation phase
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Argon SPl into a RE Beam on DIlI-D Shows Rapid

Dissipation of the RE Current
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- Ar SPl has been used into a RE beam and shows the ability to
collisionally dissipate the RE current on a 20 ms time scale.

« Physics question to answer is scaling the dissipation rate to
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Relativistic orbit frajectory models

Trajectory equations in Boozer Coordinates
[A. Cooper, et al., PPCF 39, 931 (1997);

R. White, et al., PPPL-5078, 2014]
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+ fluctuating field terms from R. White, et al.,
PPCF 52 (2010)
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Non-canonical coordinates

outside closed flux surfaces and including magnetic islands
[J. Cary, A. Brizard, Rev. Mod. Phys. 81, 693 (2009)]
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« This approach is developed in a
KORCGC code by Matt Beidler

« Can readily include magnetic
islands, flux surface breakup,
stochasticity => initial current
guench

Cp- pyb|”
- 2mB

Full Lorentz orbit model
« KORC developed by Leopoldo
Carbajal, Diego del-Castillo-Negrete
* Applied to synchrotron radiation
emission from runaways



Collision operator model

Collision operator of G. Papp, et al., Nuc. Fusion 51 (2011) 043004,
App. B (merges together relativistic and non-relativistic limits for e-e

scattering) 12
ot

A=v,/v q=7/X = l—V—2
c C

Monte Carlo collision operator:
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Collision operator + screened impurity effects

Collision operator of G. Papp, et al., Nuc. Fusion 51 (2011) 043004,
App. B (merges together relativistic and non-relativistic limits for e-e

scattering) 12
\% %
A=vIV q=7- 7:(1__2j
c c
Monte Carlo collision operator: Impu rity Screening effects

P = Aa (1= v,0) £[ (1- Afld)vdm]m modify pitch-angle scattering

172

e = Dota T Vi (qozd)At i|:VE2 (qold)At]

Impurity screening effects

v =1 1+3‘1 {z T o(x)—G(x,)+ qz} modify slowing-down/drag
7q
1
Vi :[T { J@(1+¢°)+ J(q)P(q)]ﬂ J(q)P(q) l
q L. Hesslow, O. Embréus, et al.,
2 ( ) PRL 118, 255001 (2017).
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Modifications to collision frequencies for
quantum/kinetic screening effects

» Fast electron colliding on bound electrons of partially ionized impurities

« Pitch angle scattering: elastic electron-ion collisions
— Quantum Born approximation, density functional theory

 Energy scattering: inelastic electron-electron collisions

— Bethe stopping power formula

 We use Hesslow model: equations (4) and (7)
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Synchrotron damping model includes
momentum and pitch angle evolution

Synchrotron loss model [from G. Zhang

and D. del-Castillo-Negrete, Physics of Plasmas 24, o 410° | a0 = Tome ‘ ‘
092511 (2017) ] Se 35100 | o ,
NEQ 310 | i

% — Z_p (1 _ 52 ) without sychrotron losses

r
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7, sets the time scale for synchrotron energy losses
Typically, 7, is in the range of

. 1.3 seconds for DIII-D parameters

. 0.2 seconds for ITER parameters
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Bremsstrahlung losses are included, but
small for energies considered here

1.2 10*
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Radiation from interaction between runaways an
nuclear charge of heavy impurity

- Based on M. Baktieri, et al., Phys. Rev. Lett. 94 (2005) 215003

e Derived from a radiative stopping power model

* More recent single particle binary collision models
iIndicates this may e an overestimate

— O. Embréus, A. Stahl, T. Fulop, New J. Phys. 18 (2016) 093023

« However, it does not play a significant role in the
dissipation, this is not an issue for now.




Electric field model: acceleration/spatial variation
* Free-fall acceleration equation

d . . 0A
—(}/mov) =—eE=—e—
dt ot
, * Inferred from data
e Am pere s law Jrunaway — + Runaway generation rates
* Monte Carlo

vxézﬁxﬁxﬁz,uofz,uo(f/;f

runaway plasma )

 Runaway-dominated limit:
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During pellet-induced runaway current ramp-
down, runaways are accelerated both due to loop

voltage and L di/dt
Typical DIlI-D Argon SPI pellet runaway suppression

Current = Irunaway = n-ar nrunawayec Al = 200 KA, dl/dt ~ - 4 MA/sec
I

_ runaway

2
Ta:ec

=n

runaway ~

e.g., for estimated paramters of DIII-D

runaway dominated case: / =300kA, a, =25 cmH:

runaway

=n =32x%x10"em™

oo 500 200 1COoC
runaway 3 .
—1x10™| L L | L L =
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Solving coupled nonlinear acceleration +
Ampere’s equation indicates:

5.5

Evo)uﬁon of runawlay enefgy
profile for early times in the
current quench

» 4] )]
T T T

o
:

Energy (Mev)

N
T

0 0.2 0.4 0.6 0.8

%OAK RIDGE r/ ar

National Laboratory

Energy (Mev)

Runaway current profile fills in with time

Runaway beam has nonlinear resistivity
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Early time acceleration is highly non-uniform

For mildly-relativistic energies => runaways highly conductive => skin effect

For relativistic energies => no further current increase => weak skin effect

Evolbﬁon of‘runawclly eneréy
profile at later times
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Electric field acceleration (loop voltage + inductive
component) modifies runaway dissipation rates

« For this example (E; = 10 MeV, Nt = 2 x 10 cm3), the runaway energy
decrease from collisions is approximately balanced by electric field

 The runaway current is sustained longer, but eventually drops as pitch angle
scattering accumulates
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Monte Carlo simulation of SPl runaway
dissipation on DIII-D

» Fixed density profile => next
0.8 = 10 Mev step: time-dependent profile
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Within expected parameter ranges, collisional Monte
Carlo dissipation rates are in the same range as
experiments (30 — 40 msec), further improvements needed:

e Pellet ablation cloud model — evolution in space and fime
« Runaway-neutral collisions

 Time-dependent equilibria

* Multiple ion components

« Runaway beam pinch effect (E, X B, drifts)
- D. Spong, et al. Nuclear Fusion 14 (1974) 507.

 But, need to look for anomalies between classical collisional
models and experimental decay rates

- Both runaway acceleration and deceleration are expected to create
conditions for instability drive

— Positive velocity gradients, strong spatial gradients, anisotropy

- Runaway generation anomalies

Experimental runaway generation rates deviate from predictions (R. Granetz, et al.
POP (2014)

%g)f\KllL{{D(}E- Related to effects from whistler instabilities - C. Liu, et al., PRL (2018)




Runaway interactions with waves

 Whistler instabilities

— Coupling through resonances (Anomalous Doppler, Cherenkov),
drive from anisotropy, radial gradients, non-monotonic f(E)

o Alfvén instabilities (shear, compressional Alfvén)
— Driven by anisotropy, radial gradients, non-monotonic f(E)

— Can be non-resonant and still cause scattering

— Scattering effects accumulate from long residence of runaways in
presence of wave

e MHD instabilities

— Islands, chaotic field lines, 3D fields

« Whistler/Altven activity was topic of recent DIII-D
Frontier Science experiment
— Connections to ionospheric/solar/astro-physics
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Whistler measurements utilized DIlI-D’s lon Cyclotron

Emission (ICE) diagnostic®

Am‘en_ng - RF Loop

Whistlers observed on fast wave gl [ 4

antenna siraps & toroidal RF loops
— Not observed on density interferometer

Measurements in the 100 to 200 MHz
frequency range

&

150
*K.E. Thome, “lon Cyclotron Emission on the DIII-D tokamak," ) F=4
15th IAEA Technical Meeting on Energetic Particles in W 130§ é TR
Magnetic Confinement Systems (2017) = |k é}i: 1 3
S0 [{§ SR Y Y

D. Spong, W. Heidbrink, C. Paz-Soldan, et al., iy g:..a; ﬁ . §
Phys. Rev. Lett. 120 (2018) 155002. 110 e W el
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DIlI-D low density Quiescent Runaway Electron regime provides a

confrollable runaway component for whistler wave physics studies

Runaway generation
with falling deéwsity

Decreasing plasma density
leads to increasing runaway
generation

— Controlled by gas puff
Verified by rising hard x-ray
signals
RF amplitudes in the 100 - 200

MHz frequency range related
to whistlers

C. Paz-Soldan, et al., PRL 118 (2017)

DIII-D

NATIONAL FUSION FACILITY

Runaway intensity control
by timing of gas puff

Hord X-ray in’rensi’ry
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Both anomalous Doppler and Cherenkov

resonances can be active (depends on k)
- Resonance: w-kv,—kv,-I1Q_ /y=0
- Anomalous Dopplerresonance: [ = -1
- kv, and 2., compete, leading to frequencies in the 100's MHz range

 Cherenkovresonance: [ =0
— MHz frequency range for k; ~ 0.01 to 0.05 X k
— Higher frequency w ~ 2, for larger k;

__1000r

[ .
500/
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T .71 o! T T

-500L
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500}
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™ 1T
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-500L . R
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DIll-D ENERGY (MeV) W. Heidbrink, et al., PPCF 61 (2019)
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D. Spong, et al., DOE Frontier Science, Feb., 2019




Nonlinear dynamics show limit cycles that correlate

whistlers with saw-teeth and ECE activi

« Arange of phenomena observed both between discharges and
within single discharges

*  Whistlers disappear with sawtooth crashes
«  Whistler cross-power often correlated with ECE

« At later times less correlation between whistlers/ECE/sawteeth

—  Evolving runaway gradients, velocity anisotropy, B field, scrape-off density
#171087

Sawtooth crashes:
dashed vertical
white lines

ECE: overlaid yellow
curves

3220 3240 3260 3280

4720 4740 4760 4780

Integrated whistler
power: white curves
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Theoretical RF models also indicate irregular
frequency pegaks

- AORSA warm
- Plasma model Antenna
.| (E. F. Jaeger) |
e Future use in full g
orbit particle models "
» Also used for gt .
launching external
waves for runaway | {
control UX
o1OO | 120 erO ‘ 1160 | 180 A
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50 with increasing B S
o Whistler wave
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here st
~. 160 250
COMSOL cold £ ~—
< 450 10°
plasma model 3 ot
(Cornwall Lau) 3™
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Alfvén instabilities and runaway electrons

o Alfvén waves generally present in all tokamak regimes
o Shear Alfvén waves — HL-2A, Yi Ling, et al., IAEA-EX/9-3 (2016)
o Compressional Alfvén waves — DIlI-D, Andrey Lvovskiy, et al. (2019)

o Can be excited by beams/ICRF/hot electrons/alpha particles, or direct
destabilization by runaways

o ITER: alphas can survive thermal collapse and drive AE’s (?)

Alfvén modes predicted by FAR3D model for DIlI-D runaway discharge
. TAE/BAE modes in

.
:
. ‘ discharges 165124, 165139
o4 / /// \\:‘x\ \‘, ~ 00
o0z2f /f/ A A ¥ T T T T T
f o 3\ 02 F
~ oo ! | r —N
) j/ i 0af
PP v /
A 42
R 12 14 16 18 20 22
:

L)
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Simulations of runaway dissipation with shear
Alfvén instabilities show effects of scattering
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Two Types of Runaway Electron Beam Instabilities Were

Observed at Large Positive and Negative Loop Voltage (U,)

loop voltage « 270 kA post-disruption
runaway electron beam is

-5 (4175772 Loop voltage: 2 produced after Ar killer pellet
injection

6 \WMW - .#1757776 ‘ : _
4 ’ ' ~ — .
2| _ | ECE Tyoq | -+ Aris purged from the plasma

by D, puff to reduce
0.2 ‘\*\\\W/V///
Distant HXR

collisionality
0.1 ; : = - : otatixe © Rapid drops of ECE signals are
observed when U, >0
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20 « Strong increase of RE loss
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-1
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Dilll-D

YAIONAL FUSION FACLUITY D. SponL;/ %V klalc{ij ;%Qh’e; srX e%o ! ?eb.. 2019



RE Loss at Large Negative Loop Voltage Correlates with Fast

Fluctuations of Toroidal Magnetic Field

Spectrogram. Shot 175776, ice01

7

Confined REs 1B HXR oscillations are
WMW WW*WWW well-correlated with

':E'S % ./ oscillations of fast

= B magnetic signals

(>;4

o cEg e  Fast magnetic signals
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The Possible Instability at Large Negative Loop Voltage is

Compressional Alfvén Wave

There is high-freq. band of fast
magnetic signals lying in the
range 50-75 MHz

o~
(4}

« It clearly shows the freq.
dependence on B,,, caused by
radial movement of RE beam:
WXV, XB,,,

Frequency [MHz]
o~
o

o
O

0
o

1700 1710 1720 1730 1740 « Sweeping modes are similar to
Time [ms] GAEs and TAEs observed on
Specirogram. Shot 175776, ice01 many machines at much lower
frequency (100 kHz — 50 MHz)

« The modes are supposedly CAEs
driven by REs and upshifted due

-1/2
to low density w x v, x n, /

Frequency [MHz]

« Observed instability is likely
formation of non-monotonic RE
1734 173 nm:ﬁj‘s] Ve b tail — excitation of CAEs — fast
pitch-angle scattering of REs —

D”"D increased RE loss
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Conclusions

 Monte Carlo modeling of runaway electron dissipation by
shattered pellets demonstrated

— Shielded impurity collisions + synchrotron/Bremsstrahlung
radiation losses + electric field acceleration

— Shattered pellet injection causes current decay

— Modeling shows similar decay rate as DIII-D pellet experiments

— Partially stripped impurity component can have a strong runaway
dissipation effect

» WWave effects and runaways => can increase losses and

provide new control methods
— Alfvén modes can cause non-resonant cumulative scattering

» Experimental evidence of both compressional and shear Alfvén effects
— Whistler modes observed in DIII-D Frontier Science expt.

» Scatter medium energy runaways

» Correlated with runaway intensity

» Discrete frequency bands in the 100 — 200 kHz range
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