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Runaway mitigation issues 
• SPI (shattered pellet injection) is the primary 

runaway dissipation method approved for ITER
– Successful on DIII-D, to be tested on JET in September

• Both runaway generation and dissipation can 
drive instabilities via ∂frunaway/∂ E > 0, anisotropy
– Whistler waves
– Alfvén waves (shear/compressional)
– Fan instability

• Modeling + experiments needed to understand 
which mechanisms are most active => ITER 
predictions
– Collisions with screened impurities, neutrals, 

synchrotron/Bremsstrahlung radiation, wave particle 
interactions
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Runaway control/modeling regimes include:
• Formation: prediction of runaway source

– Disruption prediction/modeling
– Runaway generation/acceleration
– Collisional and synchrotron losses
– Avalanche effects

• Suppression/dissipation strategy
– Runaway interaction with SPI ablation cloud
– Collisional effects, impurities, screening, 

synchrotron/Bremsstrahlung losses, etc.
– Ohmic and inductive field acceleration
– Interaction with electromagnetic waves, MHD, field line 

stochasticity

• For this talk we focus on the dissipation phase
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Relativistic orbit trajectory models
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Non-canonical coordinates
outside closed flux surfaces and including magnetic islands 

[J. Cary, A. Brizard, Rev. Mod. Phys. 81, 693 (2009)]

Trajectory equations in Boozer Coordinates
[A. Cooper, et al., PPCF 39, 931 (1997);

R. White, et al., PPPL-5078, 2014]

+ fluctuating field terms from R. White, et al.,
PPCF 52 (2010)

Full Lorentz orbit model

• This approach is developed in a 
KORCGC code by Matt Beidler

• Can readily include magnetic 
islands, flux surface breakup, 
stochasticity => initial current 
quench

• KORC developed by Leopoldo 
Carbajal, Diego del-Castillo-Negrete

• Applied to synchrotron radiation 
emission from runaways

Relativistic Guiding Center Model for RE
D. dCN

December 6, 2018

The relativistic guiding center model that we propose to use is the one in Ref. [1, 2]

dX

dt
=

1

b ·B⇤

✓
qE⇥ b� pk

@b

@t
⇥ b+

mµb⇥rB + pkB⇤

m�gc

◆
(1)

dpk
dt

=
B⇤

b ·B⇤ ·
✓
qE� pk

@b

@t
� µrB

�gc
,

◆
(2)

where X 2 R3 denotes the spatial location of the guiding center, and pk 2 R denotes

the component of the relativistic momentum along the magnetic field, pk = �m (V · b),

with V = dR/dt, b = B/B the unit magnetic field vector, m the particle mass, and

� =
⇥
1� (V/c)2

⇤�1/2
. The magnetic moment is defined as

µ =

��p� pkb
��2

2mB
, (3)

and it is assumed constant. The “e↵ective” magnetic field B⇤ is defined as

B⇤ = qB+ pkr⇥ b , (4)

and the guiding center relativistic factor is defined as

�gc =

r
1 +

⇣ pk
mc

⌘2

+
2muB

mc2
. (5)

[1] Tao X., Chan A.A. and Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic

charged particles.” Phys. Plasmas 14 092107 (2007)

[2] Cary J.R. and Brizard A.J. “Hamiltonian theory of guiding-center motion.” Rev. Mod. Phys.

81 693 (2009).

1

Relativistic Guiding Center Model for RE
D. dCN

December 6, 2018

The relativistic guiding center model that we propose to use is the one in Ref. [1, 2]

dX

dt
=

1

b ·B⇤

✓
qE⇥ b� pk

@b

@t
⇥ b+

mµb⇥rB + pkB⇤

m�gc

◆
(1)

dpk
dt

=
B⇤

b ·B⇤ ·
✓
qE� pk

@b

@t
� µrB

�gc
,

◆
(2)

where X 2 R3 denotes the spatial location of the guiding center, and pk 2 R denotes

the component of the relativistic momentum along the magnetic field, pk = �m (V · b),

with V = dR/dt, b = B/B the unit magnetic field vector, m the particle mass, and

� =
⇥
1� (V/c)2

⇤�1/2
. The magnetic moment is defined as

µ =

��p� pkb
��2

2mB
, (3)

and it is assumed constant. The “e↵ective” magnetic field B⇤ is defined as

B⇤ = qB+ pkr⇥ b , (4)

and the guiding center relativistic factor is defined as

�gc =

r
1 +

⇣ pk
mc

⌘2

+
2muB

mc2
. (5)

[1] Tao X., Chan A.A. and Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic

charged particles.” Phys. Plasmas 14 092107 (2007)

[2] Cary J.R. and Brizard A.J. “Hamiltonian theory of guiding-center motion.” Rev. Mod. Phys.

81 693 (2009).

1

Relativistic Guiding Center Model for RE
D. dCN

December 6, 2018

The relativistic guiding center model that we propose to use is the one in Ref. [1, 2]

dX

dt
=

1

b ·B⇤

✓
qE⇥ b� pk

@b

@t
⇥ b+

mµb⇥rB + pkB⇤

m�gc

◆
(1)

dpk
dt

=
B⇤

b ·B⇤ ·
✓
qE� pk

@b

@t
� µrB

�gc
,

◆
(2)

where X 2 R3 denotes the spatial location of the guiding center, and pk 2 R denotes

the component of the relativistic momentum along the magnetic field, pk = �m (V · b),

with V = dR/dt, b = B/B the unit magnetic field vector, m the particle mass, and

� =
⇥
1� (V/c)2

⇤�1/2
. The magnetic moment is defined as

µ =

��p� pkb
��2

2mB
, (3)

and it is assumed constant. The “e↵ective” magnetic field B⇤ is defined as

B⇤ = qB+ pkr⇥ b , (4)

and the guiding center relativistic factor is defined as

�gc =

r
1 +

⇣ pk
mc

⌘2

+
2muB

mc2
. (5)

[1] Tao X., Chan A.A. and Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic

charged particles.” Phys. Plasmas 14 092107 (2007)

[2] Cary J.R. and Brizard A.J. “Hamiltonian theory of guiding-center motion.” Rev. Mod. Phys.

81 693 (2009).

1

Relativistic Guiding Center Model for RE
D. dCN

December 6, 2018

The relativistic guiding center model that we propose to use is the one in Ref. [1, 2]

dX

dt
=

1

b ·B⇤

✓
qE⇥ b� pk

@b

@t
⇥ b+

mµb⇥rB + pkB⇤

m�gc

◆
(1)

dpk
dt

=
B⇤

b ·B⇤ ·
✓
qE� pk

@b

@t
� µrB

�gc
,

◆
(2)

where X 2 R3 denotes the spatial location of the guiding center, and pk 2 R denotes

the component of the relativistic momentum along the magnetic field, pk = �m (V · b),

with V = dR/dt, b = B/B the unit magnetic field vector, m the particle mass, and

� =
⇥
1� (V/c)2

⇤�1/2
. The magnetic moment is defined as

µ =

��p� pkb
��2

2mB
, (3)

and it is assumed constant. The “e↵ective” magnetic field B⇤ is defined as

B⇤ = qB+ pkr⇥ b , (4)

and the guiding center relativistic factor is defined as

�gc =

r
1 +

⇣ pk
mc

⌘2

+
2muB

mc2
. (5)

[1] Tao X., Chan A.A. and Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic

charged particles.” Phys. Plasmas 14 092107 (2007)

[2] Cary J.R. and Brizard A.J. “Hamiltonian theory of guiding-center motion.” Rev. Mod. Phys.

81 693 (2009).

1

Relativistic Guiding Center Model for RE
D. dCN

December 6, 2018

The relativistic guiding center model that we propose to use is the one in Ref. [1, 2]

dX

dt
=

1

b ·B⇤

✓
qE⇥ b� pk

@b

@t
⇥ b+

mµb⇥rB + pkB⇤

m�gc

◆
(1)

dpk
dt

=
B⇤

b ·B⇤ ·
✓
qE� pk

@b

@t
� µrB

�gc
,

◆
(2)

where X 2 R3 denotes the spatial location of the guiding center, and pk 2 R denotes

the component of the relativistic momentum along the magnetic field, pk = �m (V · b),

with V = dR/dt, b = B/B the unit magnetic field vector, m the particle mass, and

� =
⇥
1� (V/c)2

⇤�1/2
. The magnetic moment is defined as

µ =

��p� pkb
��2

2mB
, (3)

and it is assumed constant. The “e↵ective” magnetic field B⇤ is defined as

B⇤ = qB+ pkr⇥ b , (4)

and the guiding center relativistic factor is defined as

�gc =

r
1 +

⇣ pk
mc

⌘2

+
2muB

mc2
. (5)

[1] Tao X., Chan A.A. and Brizard A.J., “Hamiltonian theory of adiabatic motion of relativistic

charged particles.” Phys. Plasmas 14 092107 (2007)

[2] Cary J.R. and Brizard A.J. “Hamiltonian theory of guiding-center motion.” Rev. Mod. Phys.

81 693 (2009).

1

where



66

Collision operator model
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App. B (merges together relativistic and non-relativistic limits for e-e 
scattering)
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Collision operator + screened impurity effects
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Impurity screening effects
modify pitch-angle scattering

Impurity screening effects
modify slowing-down/drag

L. Hesslow, O. Embréus, et al., 
PRL 118, 255001 (2017).
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Modifications to collision frequencies for
quantum/kinetic screening effects
• Fast electron colliding on bound electrons of partially ionized impurities

• Pitch angle scattering: elastic electron-ion collisions
– Quantum Born approximation, density functional theory

• Energy scattering: inelastic electron-electron collisions
– Bethe stopping power formula

• We use Hesslow model: equations (4) and (7)
Pitch angle scattering Energy scattering
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Synchrotron damping model includes 
momentum and pitch angle evolution

tr sets the time scale for synchrotron energy losses
Typically, tr is in the range of 
• 1.3 seconds for DIII-D parameters
• 0.2 seconds for ITER parameters

Synchrotron loss model [from G. Zhang 
and D. del-Castillo-Negrete, Physics of Plasmas 24, 
092511 (2017) ]
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Bremsstrahlung losses are included, but 
small for energies considered here
d
dt
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137

• Radiation from interaction between runaways and 
nuclear charge of heavy impurity
– Based on M. Baktieri, et al., Phys. Rev. Lett. 94 (2005) 215003

• Derived from a radiative stopping power model

• More recent single particle binary collision models 
indicates this may be an overestimate
– O. Embréus, A. Stahl, T. Fulop, New J. Phys. 18 (2016) 093023

• However, it does not play a significant role in the 
dissipation, this is not an issue for now.
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Electric field model: acceleration/spatial variation
• Free-fall acceleration equation

• Ampere’s law

• Runaway-dominated limit:

where 

electron skin depth
parameter

Jrunaway
• Inferred from data
• Runaway generation rates
• Monte Carlo 

vφ
c
= A

1+ A2D. Spong, et al., Nuclear Fusion 14 (1974) 397
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Typical DIII-D Argon SPI pellet runaway suppression 
DI = 200 kA, dI/dt ~ - 4 MA/sec

~0.5 v-sec             ~0.3 v-sec

Runaway
region (r < ar)

Plasma
(0 < r < b)

During pellet-induced runaway current ramp-
down, runaways are accelerated both due to loop 
voltage and L dI/dt
Current = Irunaway = πar

2nrunawayec

⇒ nrunaway =
Irunaway
πar

2ec
e.g., for estimated paramters of DIII-D
runaway dominated case: Irunaway = 300kA, ar = 25cm

⇒ nrunaway = 3.2 ×1010cm−3

c /ω pe ≈ 3 cm, kar = 8.4

A t( )
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art0
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Solving coupled nonlinear acceleration + 
Ampere’s equation indicates:

• Early time acceleration is highly non-uniform

• Runaway current profile fills in with time

• Runaway beam has nonlinear resistivity

• For mildly-relativistic energies => runaways highly conductive => skin effect

• For relativistic energies => no further current increase => weak skin effect

Evolution of runaway energy 
profile at later times

Evolution of runaway energy 
profile for early times in the 

current quench
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Electric field acceleration (loop voltage + inductive 
component) modifies runaway dissipation rates

• For this example (E0 = 10 MeV, nAr+1 = 2 x 1014 cm-3), the runaway energy 
decrease from collisions is approximately balanced by electric field

• The runaway current is sustained longer, but eventually drops as pitch angle 
scattering accumulates
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Monte Carlo simulation of SPI runaway 
dissipation on DIII-D

• Fixed density profile => next 
step: time-dependent profile

• Electric field with loop + 
inductive components

• Singly ionized Argon

• Bremsstrahlung + synchrotron 
radiation
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Within expected parameter ranges, collisional Monte 
Carlo dissipation rates are in the same range as 
experiments (30 – 40 msec), further improvements needed:
• Pellet ablation cloud model – evolution in space and time

• Runaway-neutral collisions

• Time-dependent equilibria

• Multiple ion components

• Runaway beam pinch effect (Eɸ x Bpol drifts)
– D. Spong, et al. Nuclear Fusion 14 (1974) 507.

• But, need to look for anomalies between classical collisional 
models and experimental decay rates
– Both runaway acceleration and deceleration are expected to create 

conditions for instability drive
– Positive velocity gradients, strong spatial gradients, anisotropy
– Runaway generation anomalies

• Experimental runaway generation rates deviate from predictions (R. Granetz, et al. 
POP (2014)

• Related to effects from whistler instabilities - C. Liu, et al., PRL (2018)
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Runaway interactions with waves
• Whistler instabilities

– Coupling through resonances (Anomalous Doppler, Cherenkov), 
drive from anisotropy, radial gradients, non-monotonic f(E)

• Alfvén instabilities (shear, compressional Alfvén)
– Driven by anisotropy, radial gradients, non-monotonic f(E)
– Can be non-resonant and still cause scattering
– Scattering effects accumulate from long residence of runaways in 

presence of wave

• MHD instabilities
– Islands, chaotic field lines, 3D fields

• Whistler/Alfvén activity was topic of recent DIII-D 
Frontier Science experiment 
– Connections to ionospheric/solar/astro-physics
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D. Spong, W. Heidbrink, C. Paz-Soldan, et al.,  
Phys. Rev. Lett. 120 (2018) 155002.
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Theoretical RF models also indicate irregular 
frequency peaks 

Output |E|

Whistler wave 
launched  

here

AORSA warm
Plasma model
(E. F. Jaeger)

COMSOL cold
plasma model
(Cornwall Lau)

Antenna

Simulated frequency spectrogram 
with increasing B

• Future use in full 
orbit particle models
• Also used for 
launching external 
waves for runaway 
control
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o Alfvén waves generally present in all tokamak regimes
o Shear Alfvén waves – HL-2A, Yi Ling, et al., IAEA-EX/9-3 (2016)
o Compressional Alfvén waves – DIII-D, Andrey Lvovskiy, et al. (2019)

o Can be excited by beams/ICRF/hot electrons/alpha particles, or direct 
destabilization by runaways

o ITER: alphas can survive thermal collapse and drive AE’s (?)

Alfvén instabilities and runaway electrons

TAE/BAE modes in
discharges 165124, 165139

Alfvén modes predicted by FAR3D model for DIII-D runaway discharge
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Simulations of runaway dissipation with shear 
Alfvén instabilities show effects of scattering

n = 4 RSAE

TAE BAE
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Conclusions
• Monte Carlo modeling of runaway electron dissipation by 

shattered pellets demonstrated 
– Shielded impurity collisions + synchrotron/Bremsstrahlung 

radiation losses + electric field acceleration
– Shattered pellet injection causes current decay
– Modeling shows similar decay rate as DIII-D pellet experiments
– Partially stripped impurity component can have a strong runaway 

dissipation effect

• Wave effects and runaways => can increase losses and 
provide new control methods
– Alfvén modes can cause non-resonant cumulative scattering

• Experimental evidence of both compressional and shear Alfvén effects
– Whistler modes observed in DIII-D Frontier Science expt.

• Scatter medium energy runaways
• Correlated with runaway intensity
• Discrete frequency bands in the 100 – 200 kHz range


