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Outline

• Runaway generation processes in the presence of large 
inductive electric fields in axisymmetric geometry
• Four dimensional reconstruction of the Runaway Probability 

Function (RPF)

• Two example cases:
• Dreicer production
• Avalanche amplification

• Self-Consistent runaway formation in an axisymmetric 
plasma
• Runaway formation during the current quench
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Motivation: Runaway Generation Processes in Tokamak 
Plasmas for Large Inductive Electric Fields

• Our intuition of how toroidal geometry 
impacts runaway generation is largely based 
on electron trapping
→ Implies a reduction of runaway 

generation as the minor radius is 
increased [Rosenbluth-Putvinski 1997]

• The critical energy for an electron to run 
away in a hydrogen plasma can be 
approximated by:

• For large electric fields this energy can be 
several hundred eV
• Electrons at these modest energies are 

often characterized by

ν∗ ≡ τbounce/τeff ≪ 1

ν∗ ≫ 1
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Collisionality at Critical Energy
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Drift Kinetic Description of Runaway Electrons

• Particle based guiding-center solver for 3D-2V 
runaway electron population [McDevitt et al. 
2019] → does not require asymptotically small 
collisionality

• Large-angle collisions described by a Möller
source

• Seed mechanisms (hot tail and Dreicer) 
incorporated via a variable weight scheme

• Flux-surface averaged inductive electric field can 
be evolved self-consistently

• Provides high physics fidelity description of:
• Runaway seed formation
• Avalanche amplification of initial seed population
• Self-consistent evolution of flux-surface averaged inductive electric field

Hot tail formation
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Runaway Probability Function in Toroidal 
Geometry: Weak Inductive Electric Field

• Interesting to contrast the runaway probability function (RPF) [Liu et al. 2016, 
Zhang et al. 2017] for r/a=0 and r/a=0.8

• Radiation neglected here → electrons accelerated to arbitrarily high energy are deemed runaways
• Electrons that reach the thermal energy are deemed to not run away

• The RPF exhibits a strong local minimum at          for the off-axis case
• Significantly reduces the efficiency of runaway generation at large minor radius
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Runaway Probability Function in Toroidal 
Geometry: Strong Inductive Electric Field

• For strong inductive electric fields, off-axis RPF no longer strongly reduced in 
“trapped” region
• The large collisionality near the critical energy to run away prevents 

electrons from completing a bounce orbit
• Impact of electron trapping is largely negated
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Inductive Electric Field During a Tokamak 
Disruption

• The characteristic strength of the 
inductive electric field can be estimated 
based on the available poloidal flux 
[Boozer 2018]

• An ITER-like case with             of 
poloidal flux and a current 
decay implies an average loop voltage 
of
• This implies for    

ne=1014 cm-3, Te=10 eV, and

• Maximum inductive electric field 
generally much larger

remaining 5/8 by the avalanche. The time scale on which the
current drops and the loop voltage at the plasma edge rises
!Figs. 2"b# and 2"c#$ are also in approximate agreement with
the experiment !Figs. 1"b# and 1"c#$. Even better agreement
can be obtained by tweaking the postdisruption parameters in
the simulations, but there seems to be little meaning in doing
this in view of the considerable experimental uncertainties of
these parameters.

The simulation also shows that the postdisruption cur-
rent density is more peaked in the center of the plasma than
the initial thermal current !see Fig. 2"d#$. In fact, the current
density actually increases on the magnetic axis although the
total current falls. This phenomenon was first reported in
Refs. 6 and 20, and is likely to have implications for the
MHD stability of the postdisruption plasma. The reason for
the current density peaking is that runaway generation is
most efficient in the center of the plasma, so that the growth
of the electric field is first limited there by the runaways
“short circuiting” the plasma current. Some time after the
thermal quench, the electric field therefore has an off-axis
maximum !see Fig. 3"a#$, causing inward diffusion of the
field and consequently an increased runaway production near
the magnetic axis.

Further physical insight can be gained by running sev-
eral simulations and studying how the current and runaway
dynamics are affected by varying different disruption param-

eters. In the following we present qualitative and quantitative
results of such a parameter scan around the reference dis-
charge just described.

First, we investigate the effects of varying the initial cur-
rent I0. Physically, this affects both the primary and second-
ary runaway production mechanisms. The electric field just
after the thermal quench depends on I0, since it is propor-
tional to the initial electric field E%0= j%0 /!%0, so a low initial
current causes a small primary production. The potential
number of exponentiations in the avalanche increases with
increasing I0, since the parameter " is proportional to j%0,
which implies that electric-field diffusion is slow compared
to avalanche growth when I0 is high. Figure 4 shows that
when I0# 0.5 MA primary production is too small to initiate
an avalanche that is able to produce any significant runaway
current. At moderate values of I0 "0.5−5 MA#, there are
enough primary “seed” runaways to produce a large ava-
lanche, and hence the final current profile becomes peaked
on axis !Fig. 4"c#$. For sufficiently high I0 "$ 5 MA#, pri-
mary generation is large enough to short circuit the plasma
without the need for avalanche runaways. The final runaway
current profile then reproduces the initial current profile.

The same pattern can be recognized when n e0 or Tfinal are

FIG. 3. Contour plots of "a# the normalized electric field and "b# the nor-
malized runaway density from a simulation of the runaway dynamics in the
disruption in JET discharge 63 133. FIG. 4. For the three cases I0=0.5 MA "H=0.1#, I0=1 MA "H=7.7#, and

I0=5 MA "H=25#: "a# On-axis runaway production rates. "b# Evolution of
the runaway current and the total "runaway+Ohmic# current. "c# The accu-
mulated primary runaway density profile "dotted# and the final runaway
density profile in the postdisruption steady state "solid#. The initial current
profile "dashed# is shown for reference. Note that the runaway production in
the I0=0.5 MA case is too low to be seen on the scales of the figures.

102502-5 Runaway electrons and the evolution of the plasma… Phys. Plasmas 13, 102502 !2006"
JET-like case

[Smith et al. 2006]
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Runaway Electron Generation is Strongly 
Localized for Large Electric Fields

• For a large inductive electric field electrons can gain a significant 
amount of energy in a single toroidal transit

• Specifically, for an ITER-like case with an average loop voltage of

• An electron can gain up to            during a single toroidal transit
• The critical energy at this electric field is
• Electrons can more than double their energy in a single toroidal transit
• For          , electrons can be accelerated before sampling the entire flux 

surface

• The inductive electric field in tokamak geometry scales as
• Implies strong poloidal localization of runaway generation for large 

inductive electric fields
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Runaway Probability Function in Configuration 
Space

• In the low collisionality limit and a modest 
inductive electric field 

• For large inductive electric fields the RPF is no 
longer a flux surface function ó
• The strong in-out asymmetry results from 

• A weaker up-down asymmetry results from 
helicity of magnetic field line

• RPF substantially increased across poloidal 
cross section for large inductive electric field
• Significant increase in efficiency of all 

runaway generation processes
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Figure 3. Projection of the RPF onto the (R,Z) plane for electrons
with a fixed energy (K = 2Kc) and µ ≈ 0. Only electrons moving
in the negative direction were considered. Panel (a) indicates the
small electric field case (E/Ec = 10), whereas panel (b) indicates
the strong electric field case (E/Ec = 1000). The other parameters
were chosen to be ne = 1014 cm−3, a/R0 = 1/3, and Zeff = 1.

strong reduction of the RPF inside the trapped region is no
longer present. The absence of trapping physics in modifying
the RPF at low energies results directly from the high col-
lisionality at these low energies preventing an electron from
completing it’s bounce orbit, thus largely negating the reduc-
tion of runaway production due to trapping effects.

In addition to modifying the momentum space structure
of the RPF, the high collisionality regime strongly modi-
fies the real space structure of runaway generation processes.
Specifically, in the limit of weak collisionality and a mod-
est inductive electric field, the electron distribution can be
approximately described in terms of its collisionless invari-
ants fe = fe (E , µ, pϕ). Here E is the electron’s energy, µ
the magnetic moment, and pϕ the toroidal canonical momen-
tum. In the limit of small ρ∗e ≡ ρe/a (ρe and a are the elec-
tron gyroradius and tokamak minor radius, respectively), the
electron distribution function can be further approximated by
fe ≈ fe (γ, µ,ψ). Here ψ is the poloidal flux function, µ
the magnetic moment, and we have noted that pϕ ≈ eψ/c for
ρ∗e ≪ 1. In such a limit, the electron distribution function, and
thus the RPF, will be a flux surface function for fixed values of
γ and µ. This property of the RPF is verified in Fig. 3(a) for

(a) Radial Modulation of Dreicer Production Rates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

r/a

S
D

re
ic

e
r(r

)/
S

D
re

ic
e

r(0
)

 

 

10 keV, E/E
c
≈3

1 keV, E/E
c
≈30

100 eV, E/E
c
≈300

10 eV, E/E
c
≈3000

Nilsson 2015

Figure 4. Comparison of Dreicer production rates as a function of
radius for plasmas at different temperatures. The solid black curve
corresponds to the fit formula given in the caption of Fig. 6 of Ref.
[29]. The inductive electric field was chosen to be E/ED = 0.06.

the case of a weak inductive electric field (E/Ec = 10). Here
we have constructed the RPF in the R-Z plane for a fixed value
of kinetic energy (K = 2Kc) and magnetic moment (µ ≈ 0).
It is evident that the RPF is constant along the circular flux sur-
faces assumed in this example, suggesting that runaway gen-
eration processes can be described in the three dimensional
space (γ, µ,ψ). Contrasting this case with that of a large in-
ductive electric field [see Fig. 3(b)], the RPF in this latter case
exhibits a strong in-out asymmetry, along with a weaker up-
down asymmetry, and is thus not a flux surface function. The
strong peaking of the RPF on the inboard side results from the
1/R scaling of the inductive electric field, allowing runaway
generation processes to be more efficient on the inboard side.
The weaker up-down asymmetry results from the helicity of
the equilibrium magnetic field lines, and vanishes in the limit
of q → ∞. The q-profile in this example case was taken to be
q = 2.1 + 2 (r/a)2.

In order to illustrate the impact of these physical processes
on runaway generation we will use the relativistic drift kinetic
solver described in Refs. [24, 27]. This formulation, while
computationally more expensive compared to more com-
monly employed bounce-averaged formulations [15, 28, 29],
does not require the electrons to be in the low collisionality
regime. The two runaway generation processes that we will
consider correspond to Dreicer acceleration and the avalanche
amplification of an existing seed electron population. For
these calculations we will assume the simplest consistent
magnetic geometry, specifically a low-β equilibrium with cir-
cular flux surfaces and a constant loop voltage. An ITER-like
case with a minor radius of a = 200 cm and an inverse aspect
ratio of a/R0 = 1/3 is assumed, along with a pure hydrogen
plasma with an electron density of ne = 2 × 1014 cm. The
density and temperature will be taken to be constant across
the plasma radius. Radiative losses will be neglected in all of
the calculations below to facilitate comparisons with previous
work.

Considering Dreicer production first, as a means of scan-
ning collisionality regimes, we will compute the Dreicer pro-
duction rate as a function of radius for a broad range of tem-
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Figure 3. Projection of the RPF onto the (R,Z) plane for electrons
with a fixed energy (K = 2Kc) and µ ≈ 0. Only electrons moving
in the negative direction were considered. Panel (a) indicates the
small electric field case (E/Ec = 10), whereas panel (b) indicates
the strong electric field case (E/Ec = 1000). The other parameters
were chosen to be ne = 1014 cm−3, a/R0 = 1/3, and Zeff = 1.

strong reduction of the RPF inside the trapped region is no
longer present. The absence of trapping physics in modifying
the RPF at low energies results directly from the high col-
lisionality at these low energies preventing an electron from
completing it’s bounce orbit, thus largely negating the reduc-
tion of runaway production due to trapping effects.

In addition to modifying the momentum space structure
of the RPF, the high collisionality regime strongly modi-
fies the real space structure of runaway generation processes.
Specifically, in the limit of weak collisionality and a mod-
est inductive electric field, the electron distribution can be
approximately described in terms of its collisionless invari-
ants fe = fe (E , µ, pϕ). Here E is the electron’s energy, µ
the magnetic moment, and pϕ the toroidal canonical momen-
tum. In the limit of small ρ∗e ≡ ρe/a (ρe and a are the elec-
tron gyroradius and tokamak minor radius, respectively), the
electron distribution function can be further approximated by
fe ≈ fe (γ, µ,ψ). Here ψ is the poloidal flux function, µ
the magnetic moment, and we have noted that pϕ ≈ eψ/c for
ρ∗e ≪ 1. In such a limit, the electron distribution function, and
thus the RPF, will be a flux surface function for fixed values of
γ and µ. This property of the RPF is verified in Fig. 3(a) for

(a) Radial Modulation of Dreicer Production Rates
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Figure 4. Comparison of Dreicer production rates as a function of
radius for plasmas at different temperatures. The solid black curve
corresponds to the fit formula given in the caption of Fig. 6 of Ref.
[29]. The inductive electric field was chosen to be E/ED = 0.06.

the case of a weak inductive electric field (E/Ec = 10). Here
we have constructed the RPF in the R-Z plane for a fixed value
of kinetic energy (K = 2Kc) and magnetic moment (µ ≈ 0).
It is evident that the RPF is constant along the circular flux sur-
faces assumed in this example, suggesting that runaway gen-
eration processes can be described in the three dimensional
space (γ, µ,ψ). Contrasting this case with that of a large in-
ductive electric field [see Fig. 3(b)], the RPF in this latter case
exhibits a strong in-out asymmetry, along with a weaker up-
down asymmetry, and is thus not a flux surface function. The
strong peaking of the RPF on the inboard side results from the
1/R scaling of the inductive electric field, allowing runaway
generation processes to be more efficient on the inboard side.
The weaker up-down asymmetry results from the helicity of
the equilibrium magnetic field lines, and vanishes in the limit
of q → ∞. The q-profile in this example case was taken to be
q = 2.1 + 2 (r/a)2.

In order to illustrate the impact of these physical processes
on runaway generation we will use the relativistic drift kinetic
solver described in Refs. [24, 27]. This formulation, while
computationally more expensive compared to more com-
monly employed bounce-averaged formulations [15, 28, 29],
does not require the electrons to be in the low collisionality
regime. The two runaway generation processes that we will
consider correspond to Dreicer acceleration and the avalanche
amplification of an existing seed electron population. For
these calculations we will assume the simplest consistent
magnetic geometry, specifically a low-β equilibrium with cir-
cular flux surfaces and a constant loop voltage. An ITER-like
case with a minor radius of a = 200 cm and an inverse aspect
ratio of a/R0 = 1/3 is assumed, along with a pure hydrogen
plasma with an electron density of ne = 2 × 1014 cm. The
density and temperature will be taken to be constant across
the plasma radius. Radiative losses will be neglected in all of
the calculations below to facilitate comparisons with previous
work.

Considering Dreicer production first, as a means of scan-
ning collisionality regimes, we will compute the Dreicer pro-
duction rate as a function of radius for a broad range of tem-
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Parallel Electric Field in Axisymmetric Tokamak 
Geometry

• Incompressibility              , but                  implies [Helander-Sigmar]

• For a low-beta poloidal plasma,                       ⇐ Flux surface function

• From Ohm’s law

• In simplest limit                                     ,

• More complex cases possible for poloidally and toroidally localized 
impurity deposition ó treat in future work
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Outline

• Runaway generation processes in the presence of large 
inductive electric fields in axisymmetric geometry
• Four dimensional reconstruction of the Runaway Probability 

Function (RPF)

• Two example cases:
• Dreicer production
• Avalanche amplification

• Self-Consistent runaway formation in an axisymmetric 
plasma
• Runaway formation during the current quench
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Dreicer Production in Tokamak Geometry

• Considering Dreicer production as a 
function of electric field strength

• held constant while the temperature is 
scanned

• Noting                                             ó results in 
the strength of electric field being varied

• For modest values of the inductive electric 
field (high temperature) the results from 
Nilsson et al. 2015 are reproduced

• For large inductive electric fields (low temperature) the present results 
deviate qualitatively from previous predictions
• Dreicer production more efficient at larger minor radii

Radial Variation of Dreicer Production

ν∗ ≡ τbounce/τeff ≪ 1

ν∗ ≫ 1

hydrogen plasma

ne = 1014 cm−3, q = 2, a = 200 cm

Vloop = 2πREϕ = const

Eϕ ∝ 1/R
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Runaway Distribution near Threshold Energy 
Strongly Asymmetric

• Noting the modulation of inductive 
electric field
• Runaway electrons more efficiently 

accelerated on inboard side
• Less efficiently on outboard side

• Poloidal modulation does not cancel:
• Dreicer production depends non-

linearly on the electric field strength
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Figure 2. (a) Critical energy for an electron to runaway (solid white curve) at a minor radius of r/a = 0.8

versus the poloidal angle projected on to a Maxwellian distribution. The dashed white curve indicates the

value of the electric field at r = 0. (b) The fraction of electrons with energy greater than mec2 (γc − 1) =
(
mec2/2

)
[Ec/E (θ)] as a function of radius. The other parameters were chosen to be Te = 100 eV,

E1/Ec ≈ 306.6, and a/R0 = 1/3.

on the location of the critical energy γc − 1 for an electron to runaway. For a fully ionized plasma

with a constant Coulomb logarithm, this quantity is well approximated by γc − 1 = (1/2)Ec/E.

Suggesting that the validity of bounce-averaged formulations for computing Dreicer production is

not only a function of density and temperature, but also a function of the strength of the inductive

electric field.

The second, more subtle effect, results from the modification to the parallel transport in the

collisional regime. Specifically, in the collisional regime electrons diffuse rather than free stream

along the magnetic field line with a diffusivity that can be estimated as

D∥ ∼ λ2νD ∼ v2/νD,

where λ = v/νD is the mean-free-path. The time to traverse a flux surface is then given by [? ]

τdiff
τc

∼ (qR0)
2

D∥
∼
( c
v

)2(qR0

a

)2( a

cτc

)2

(τcνD) .

Comparing this time scale with the free streaming electron transit time τfree ∼ qR0/v, yields

τdiff
τfree

∼ ε3/2
(
vTe

vc

)4

ν∗,

11

(R−R0)/a

Z/
a

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0

0.01

0.02

0.03

0.04

0.05

ν∗ ≡ τbounce/τeff ≪ 1

ν∗ ≫ 1

hydrogen plasma

ne = 1014 cm−3, q = 2, a = 200 cm

Vloop = 2πREϕ = const

Eϕ ∝ 1/R

1

Critical energy
to run away

Poloidal dist.
of electrons

at critical energy

E/Ec=3000, Te=10 eV

E/Ec=300, Te=100 eV



Avalanche Amplification for Large Electric 
Fields

• Related physics impacts avalanche 
amplification

• High collisionality at critical energy 
negates “neoclassical” reduction 
factor

• However, the avalanche growth rate 
is (approximately) linear with respect 
to the electric field:
• modulation of inductive electric 

field will (nearly) cancel
• Little to no increase expected at large 

minor radii for asymptotically large 
electric fields
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Impact of Impurities on Runaway Probability 
Function

• Presence of impurities modifies the collisionality via two partially 
compensating trends

• Critical energy to runaway increased

• Pitch-angle scattering more efficient at a given energy
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Impact of Impurities on Avalanche 
Amplification 

• Presence of impurities only modestly impact radial modulation of 
avalanche amplification factor
• Amplification factor reduced as radius is increased for small
• Amplification factor approximately constant for large 
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Outline

• Runaway generation processes in the presence of large 
inductive electric fields in axisymmetric geometry
• Four dimensional reconstruction of the Runaway Probability 

Function (RPF)

• Two example cases:
• Dreicer production
• Avalanche amplification

• Self-Consistent runaway formation in an axisymmetric 
plasma
• Runaway formation during the current quench



Runaway Electron Formation: Axisymmetric 
Plasma

• Interested in identifying the impact of the above physics on RE 
formation in an axisymmetric tokamak plasma

• Seek testbed for exploring coupling of RE to field evolution

• Incorporate accurate description of RE dynamics:
• RE generation processes in toroidal geometry for arbitrary collisionality

regimes
• Spatial transport of RE for plasmas with large impurity content [McDevitt 

et al. 2019]
• Finite orbit width effects
• …

• Allows for spatial profile of RE current to be determined
• MHD stability of RE current carrying plasma



RE Generation during Current Quench

• Will evolve flux surface averaged induction 
equation

• Along with a modified Ohm’s law [Rosenbluth-
Putvinski 1997]:

• evaluated from kinetic solution
• Density and temperature profiles prescribed
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Hot tail formation

• Incorporating seed mechanisms requires resolving both the tail and 
bulk plasma non-perturbatively

• Variable weight scheme employed to improve resolution of tail population: marker 
particles split as they are accelerated

• Only tail electrons fed back into field solve óE∥ = η (jp − jRA)
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= α
ξ (1− ξ2)

γ
. (32)

We also note that this synchrotron radiation component is solved simultaneously with the guiding-

center equations outlined in Sec. II A.

E. Field Evolution

1. Equations

Considering Faraday’s and Ampere’s laws (SI units)

∇× E = −∂B
∂t

, (33)

∇×B = µ0j, (34)

where µ0 is the vacuum permeability. Combining these expressions yields

∇2E = µ0
∂j

∂t
= µ0

∂

∂t
(jT + jRA) , (35)

where jT and jRA represent the current carried by the thermal and runaway electron populations,

respectively, and E is the inductive electric field. Equation (35) provides a rigorous relation be-

tween the net current and electric field, but is typically difficult to use directly since it requires the

simultaneous solution to both the thermal and runaway electron populations. For arbitrary elec-

tric fields, this likely requires the solution of the non-linear relativistic Fokker-Planck equation

incorporating a large-angle collision operator, a capability not yet available. As a result, several

idealizations are commonly employed. Perhaps the simplest model [14] corresponds to expressing

the thermal component of the current in terms of the electric field via Ohm’s law

E = ηjT , (36)

and neglecting the left hand side of Eq. (35), allowing

0 = µ0
∂

∂t

(
E

η
+ jRA

)
, (37)

which implies

E∥

η
+ jRA∥ = j0 (ψ)

⇒ E∥ = η
[
j0 (ψ)− jRA∥

]
, (38)
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Current Transfer

• Runaway generation occurs in three 
distinct phases

1. Hot tail generation: t-tTQ=(1ms-2.3ms)
• Strongly non-Maxwellian solution due 

to rapid thermal quench

2. Dreicer generation: t-tTQ=(2.3ms-3ms)
• Electric field directly accelerates 

electrons from thermal bulk

3. Avalanche amplification: t-tTQ=(3ms-
15ms)
• Seed population amplified until RE’s 

overtake plasma current

• Assume JET like shot with a 
thermal quench of 𝜏TQ=0.5 ms

• Hydrogen plasma assumed



Profile Evolution during Current Quench

• Current plateau forms on a timescale of 
15 ms

• Once the runaway beam forms, electric 
field drops
• Hollow E-field profile forms due to 

peaked RE current profile
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Summary

• Runaway probability function found to have a non-trivial structure in 
the 4-D phase space
• Runaway distribution function is not well approximated as a flux surface 

function near critical energy to run away

• The efficiency of runaway generation processes found to be strongly 
modified in the limit of large inductive electric fields
• Dreicer production rate is found to be enhanced at finite minor radii
• Avalanche amplification found to be approximately constant in radius

• Runaway generation coupled to a self-consistently evolving inductive 
electric field in tokamak geometry
• Provides high physics fidelity description of 2D-2V runaway electron 

phase space evolution
• Future work aimed at incorporating a self-consistent collisional radiative 

model
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