New Observations of Magnetic Island Flux Tunneling, Heteroclinic Bifurcation and Seeding by Non-Linear Three-Wave Coupling

László Bardóczi 1

with Todd E. Evans¹, N. C. Logan² and E. J. Strait¹

¹General Atomics

²Lawrence Livermore National Laboratory

Presented at:

2021 IAEA-PPPL Workshop:

Theory and Simulation of Disruptions

July 22, 2021

E-mail: bardoczil@fusion.gat.com

- Flux Tunneling Between Magnetic Island Chains
 L. Bardóczi and T.E. Evans 2021 Nucl. Fusion 61 074001 (2021)
- 2. Magnetic Island Heteroclinic Bifurcation
 L. Bardóczi and T. E. Evans Phys. Rev. Lett. 126, 085003 (2021)
- 3. NTM Seeding by Nonlinear Three-Wave Interactions
 L. Bardóczi, N. C. Logan and E. J. Strait, Phys Rev. Lett. awaiting
 publication (2021)

- Flux Tunneling Between Magnetic Island Chains
 L. Bardóczi and T.E. Evans 2021 Nucl. Fusion 61 074001 (2021)
- Magnetic Island Heteroclinic Bifurcation
 L. Bardóczi and T. E. Evans Phys. Rev. Lett. 126, 085003 (2021)
- 3. NTM Seeding by Nonlinear Three-Wave Interactions
 L. Bardóczi, N. C. Logan and E. J. Strait, Phys Rev. Lett. awaiting
 publication (2021)

Topological Bifurcation of Magnetic Islands Can Bring/ Explain Challenges for Active Tearing Mode Stabilization

Background/Motivation:

- 2/1 magnetic islands cause disruptions.
- Stabilization with ECCD is a commonly used technique, but it requires good confinement at the O-point.

Recent theory predicts topological bifurcation within magnetic islands
due to flux tunneling between adjacent co-rotating islands of different helicity [1].
 Never tested in experiments before.

Importance:

Stabilization of coupled islands by ECCD may be harder (or impossible)

Large Coupled Island Chains Form Stochastic Regions and Exchange Magnetic Field Lines

- Flux tunneling was predicted in numerical simulations [1]
- Intersections of Wu(x1) & Ws(x0) define lobes called homoclinic tangles.
- Overlaps of homoclinic tangles cause stochastic mixing near the X points.
- At sufficiently large perturbation amplitude, homoclinic tangles associated with different islands intersect and field lines are exchanged between the island chains,

[1] T. E. Evans et al, 7 174-190 JoP

Topological Bifurcation \underline{Can} Be Monitored in Experiments by Measurements of T_e in the Presence of Heat Sources

• Field lines can't be measured but $T_{\rm e}$ is determined by the magn. geometry + transport:

• Nested surfaces & Q>0 \rightarrow peaked T_e

Stochastic flux & Q>0 \rightarrow flat T_e

 2π

ECH offers ability to differentiate between nested & stochastic magnetic configurations using T_e data.

Analysis technique: use helical profile for accurate and detailed characterization of the $\triangle T_e$ structure at the O-point

- ECE is probed with 0.5 MHz

 → at 10kHz rotation Te(ξ) has 50
 samples per island cycle. At 1ms
 resolution one can average 10×
- Use helical profile in experiment to determine △T_e. Needs rotating islands.

ξ=mθ-nφ

 $\triangle T_e$ derived from phase-locked ECE data is used to characterize the thermal confinement within magnetic islands.

EC Heated 9 cm 2/1 Islands & 5/2 Islands with Coupled and Decoupled Phases

- Constant 3MW ECH & 60kA ECCD
- Constant ECH density and electron density within the island
- Linear diffusion predicts $\Delta T_e = P_o W^2 / (n_e \chi_\perp)$

O-point T_e perturbation dynamics should go as $\sim W^2(t)$

Topological Bifurcation in 2,1 Island: $\triangle T_e/T_e \sim 0\%$ When Coupled to 5,2 island, $\triangle T_e/T_e \sim 0\%$ Grows to 8% After Decoupling

- 5,2 slowing down
- 2/1 grows locked in the 5,2 frame
- Coupling persists for ~50 ms

 $f_{2/1}/n_1 = f_{5/2}/n_2$

Topological Bifurcation in 2,1 Island: $\triangle T_e/T_e \sim 0\%$ When Coupled to 5,2 island, $\triangle T_e/T_e \sim 0\%$ Grows to 8% After Decoupling

- 5,2 slowing down
- 2/1 grows locked in the 5,2 frame
- Coupling persists for ~50 ms
- ΔT_e doesn't grow in coupled islands
- ΔT_e grows after decoupling
 - Recall: ECH density & n_e are ~constant in 2,1 island.

Coupling between the 2,1+5,2 islands degrades EC wave energy confinement in the 2,1 island

Topological Bifurcation in 2,1 Island: $\triangle T_e/T_e \sim 0\%$ When Coupled to 5,2 island, $\triangle T_e/T_e \sim 0\%$ Grows to 8% After Decoupling

- 5,2 slowing down
- 2/1 grows locked in the 5,2 frame
- Coupling persists for ~50 ms
- ΔT_e doesn't grow in coupled islands
- ΔT_e grows after decoupling
- Recall: ECH density & n_e are ~constant in 2,1 island.

Coupling between the 2,1+5,2 islands degrades EC wave energy confinement in the 2,1 island

ORBIT is Used to Map Out the Structure of Vacuum Islands

- Vacuum island structures are calculated with field line mapping via ORBIT [1].
- Non-axisymmetric field perturbation:

$$\tilde{\mathbf{B}}(\mathbf{r}, \xi, \mathbf{t}) = \nabla \times (\hat{z}\Psi(r, \xi, t))$$

Use radially localized helical current:

$$\tilde{\mathbf{j}}(r,\xi) = \tilde{\mathbf{j}}_{\circ}\cos(\xi)\delta(r_s - r)\mathbf{e}_z$$

• Ampere's law gives [2,3]:

$$\Psi_{\delta}(r,\xi) = \frac{\mu_{\circ}\tilde{\mathbf{j}}_{\circ}}{m^2} f(r) \cos(\xi)$$

$$f(r) = \frac{r^2}{r_s}$$
 at $r < r_s$, $f(r) = \frac{r_s^3}{r^2}$ at $r > r_s$

Islands are represented in ORBIT by helical current filaments whose parameters are fully constrained by magnetic measurements.

ORBIT Shows Topological Bifurcation Occurs at the Time of Coupling/Decoupling, in Agreement with Local T_e Data

• Coupled phase: stochastic 2/1 island & field lines tunnel into the 5/2 island.

ORBIT Shows Topological Bifurcation Occurs at the Time of Coupling/Decoupling, in Agreement with Local T_e Data

- Coupled phase: stochastic 2/1 island & field lines tunnel into the 5/2 island.
- **Decoupled phase:** nested flux surfaces in the 2/1 island.

Island Response to ECCD Correlates with Coupling Events

- Constant 2.1MW ECH
- ITER baseline scenario plasma
- 4/3 slowing down
- 2/1 grows to 10 G
 locked in the 4/2 frame
- ELM brakes coupling, 2/1 shrinks
- Islands re-couple at another ELM
- 2/1 grows, locks & terminates the H-mode.

Stochastic magnetic geometry in the 2,1 island due to coupling to islands in nearby rational surfaces can completely inhibit ECCD stabilization.

- Flux Tunneling Between Magnetic Island Chains
 L. Bardóczi and T.E. Evans 2021 Nucl. Fusion 61 074001 (2021)
- Magnetic Island Heteroclinic Bifurcation
 L. Bardóczi and T. E. Evans Phys. Rev. Lett. 126, 085003 (2021)
- 3. NTM Seeding by Nonlinear Three-Wave Interactions
 L. Bardóczi, N. C. Logan and E. J. Strait, Phys Rev. Lett. awaiting
 publication (2021)

Heteroclinic Bifurcation of Magnetic Islands Can Bring Challenges for Active Tearing Mode Stabilization

Background/Motivation:

- Recent theory [1,2] predicts a <u>new class of bifurcations</u> forming heteroclinic islands caused by coupled TMs with same m/n, for example, a 2,1 island can bifurcate into a 4,2.
 - This theory has never been tested before.
- This can bring/explain existing challenges for active stabilization:
 - o Rotating islands: ECCD splits between heteroclinic O-points.
 - o Locked islands: can drive ECCD only in one O-point at a time.

[1] T. E. Evans et al, ArXiv 1805.10394v2 (2018)

[2] W. Wu, T. E. Evans et al, NF **59** 066010 (2019)

4/2 Structure in Magnetic Probes Comes From 2 Set of Heteroclinic 2/1 islands; Homoclinic 4/2 Islands Don't Exist

- · Going around toroidally 2x will close the line
- This will generate 2 (1) islands in the poloidal (toroidal) plane
- Subsequent toroidal cycles will run along the same line, without mapping more islands

4/2 Structure in Magnetic Probes Comes From 2 Set of Heteroclinic 2/1 islands; Homoclinic 4/2 Islands Don't Exist

- 4 (2) islands can be mapped by two disjoint O-lines, both with 2/1 helicity
- 4/2 spatial structure is from two 2/1 flux tubes / heteroclinic islands of 2/1 helicity
- There are no 4/2 flux tubes "homoclinic 4/2 islands" (see isotopy classes of embedded closed curves in a torus)

4,2 spatial structure can not originate from a single flux tube of 4,2 helicity but only from 2 sets of heteroclinic 2,1 islands.

Solo 2/1 TMs form homoclinic islands with nested flux surface topology.

Solo 2/1 TMs form homoclinic islands with nested flux surface topology.

- Solo 2/1 TMs form homoclinic islands with nested flux surface topology.
- Heteroclinic bifurcation occurs due to coupled TMs of different helicity at same q.
- Second, disjoint, O-line forms within the largest island.

- Solo 2/1 TMs form homoclinic islands with nested flux surface topology.
- Heteroclinic bifurcation occurs due to coupled TMs of different helicity at same q.
- Second, disjoint, O-line forms within the largest island.
- In the analyzed discharge the threshold is at $A_{4/2}/A_{2/1}$ ~80% relative amplitude at r_s .

Higher Order Heteroclinic Bifurcations Can Occur Due to Additional TMs with Higher (m,n) With the Same m/n

Higher Order Heteroclinic Bifurcations Can Occur Due to Additional TMs with Higher (m,n) With the Same m/n

- Higher (m,n) tearing modes can further modify the internal structure:
 - $_{\circ}$ 4% (at the wall) 6/3 removes the internal X-point

Higher Order Heteroclinic Bifurcations Can Occur Due to Additional TMs with Higher (m,n) With the Same m/n

- Higher (m,n) tearing modes can further modify the internal structure:
 - $_{\circ}$ 4% (at the wall) 6/3 removes the internal X-point
 - o 7% (att the wall) 6/3 turns the internal X-point into a 3rd heteroclinic O-point

Candidate Discharge: Large Coupled 2/1, 4/2 & 6/3 TMs

- Large & long lived & coupled 2/1, 4/2 & 6/3 TMs [identified through their toroidal structure from multiple toroidally placed probe signals]
- q=2 is subject to ECH (not shown)
- o Good ECE data: no cutoff or 3rd harmonic contamination (not shown)

Detailed fits confirm non-sinusoidal spatial structure

- Harmonics n=1,2,3 rotate together \Rightarrow constant spatial structure
- Alignment of the maxima for the three harmonics creates
 - Narrow maximum
 - Broader minimum

Detailed fits confirm non-sinusoidal spatial structure

- Harmonics n=1,2,3 rotate together \Rightarrow constant spatial structure
- Alignment of the maxima for the three harmonics creates

4/2 O-points are shifted with respect to the 2/1 O-point by +/- 90°

Faster 2/1 Growth Yields Scan of $A_{4/2}/A_{2/1}$ Relative Amplitude in a Range Where the Heteroclinic Bifurcation Should Occur

Early in the shot 4/2 is as large as the 2/1 at q=2 and this ratio decreases to ~60% in the saturated state. A transition from heteroclinic to homoclinic structure should be occurring in this shot.

Simulations show bifurcation should be occurring in this DIII-D shot.

Local measurements are needed for confirmation.

T_e Distribution Within the EC Heated Island is Consistent With Bifurcation From Heteroclinic to Homoclinic Structure

Helical profile of electron temperature peak through the O-point (ECE) [keV]

- Measured Pi/2 phase shift between 4/2 and 2/1 O-points is a strong constraint and is well matched by T_e early in the evolution.
- Te data supports bifurcation from heteroclinic to monoclinic phase

T_e Distribution Within the EC Heated Island is Consistent With Bifurcation From Heteroclinic to Homoclinic Structure

T_e Distribution Within the EC Heated Island is Consistent With Bifurcation From Heteroclinic to Homoclinic Structure

T_e Distribution Within the EC Heated Island is Consistent With Bifurcation From Heteroclinic to Homoclinic Structure

- Measured Pi/2 phase shift between 4/2 and 2/1 O-points is a strong constraint and is well matched by T_e in the early evolution.
- T_e data supports bifurcation from heteroclinic to monoclinic phase

Time Trance of $\triangle T_e$ Width Shows 2 Preferred Solutions, Transition Correlates With 4/2 Relative Amplitude

- There are two solutions for the ΔT_e width
- ΔT_e is consistent with double O-points when heteroclinic structure is expected based on the TM amplitudes.

• Below a threshold relative amplitude of $\sim\!80\%$ ΔT_e is consistent with the island having a single O-point.

Time Trance of $\triangle T_e$ Width Shows 2 Preferred Solutions, Transition Correlates With 4/2 Relative Amplitude

• Below a threshold relative amplitude of $\sim 80\%$ ΔT_e is consistent with the island having a single O-point.

- There are two solutions for the ΔT_e width
- ΔT_e is consistent with double O-points when heteroclinic structure is expected based on the TM amplitudes.

- 1. Flux Tunneling Between Magnetic Island Chains
 L. Bardóczi and T.E. Evans 2021 Nucl. Fusion 61 074001 (2021)
- Magnetic Island Heteroclinic Bifurcation
 L. Bardóczi and T. E. Evans Phys. Rev. Lett. 126, 085003 (2021)
- NTM Seeding by Nonlinear Three-Wave Interactions
 L. Bardóczi, N. C. Logan and E. J. Strait, Phys Rev. Lett. awaiting publication (2021)

Nonlinear Three-Wave Coupling of Magnetic Islands Predicts New Mechanism for Disruptive 2,1 NTM Seeding

Background/Motivation:

- NTM prevention by removal of 2,1 seeding mechanisms is important for stable operation of future reactors (e.g. sawtooth and ELM control) [1].
- The theory of nonlinear 3-wave coupling applies to MI triplets [2-7].
 - \rightarrow Potential new type of disruptive NTM seeding in tokamaks. e.g. 3,2 1,1 \rightarrow 2,1.

Importance:

• Complicates NTM prevention by removal of 2,1 seeding mechanisms. Calls for high differential rotation and avoidance of all tearing activity as much as possible.

- [1] O. Sauter et al, PRL 88, 105001 (2002); [2] C. C. Hegna, PoP 3 4646 (1996);
- [3] R. Fitzpatrick, PoP 22 042514 (2015); [4] S. Asadi, et al. PRL, 69 2 (1992);
- [5] B. Tobias, et al. PoP, 23 056107 (2016); [6] E. J. Strait, et al. PRL, 62 11 1282, (1989);
- [7] M.F.F. Nave et al, NF 43 179 (2003);

- Discharges with ELM and sawtooth crashes
- β in flattop & and j(r) fully relaxed.
- The plasma is robustly stable to classical tearing modes (RDCON [1])

- Discharges with ELM and sawtooth crashes
- β in flattop & and j(r) fully relaxed.
- The plasma is robustly stable to classical tearing modes (RDCON [1])
- 4,3 slows & couples to 3,2 when 2,1 is seeded
- The following 3-wave relations are satisfied:

$$(m, n = 4, 3) - (m, n = 3, 2) \longrightarrow (m, n = 1, 1)$$
 (1)

$$(m, n = 3, 2) - (m, n = 1, 1) \longrightarrow (m, n = 2, 1).$$
 (2)

- 4,3 amplitude drops when 2,1 grows,
 - → consistent with the 4,3 driving the 2,1

 Combination of HFS and LFS magnetic probes enable to isolate m=1 & m=2 in the n=1 signal

- Combination of HFS and LFS magnetic probes enable to isolate m=1 & m=2 in the n=1 signal
- Seeding: 2,1 rises by 1G when modes couple
- 3-wave relations are satisfied, as 1,1 mode exists in the 3,2 frame at seeding (2G)
- 1,1 crash is not the cause of 2,1 seeding:
 (a) 1,1 crash occurs 16ms after the seeding
 (b) 2,1 is 6G at the time of the 1,1 crash and is not affected by it
- Linear 2,1 growth is consistent with <u>N</u>TM (classical TM grows as ~t²)

Magnetic Energy Balance of Cylindrical Model Shows Drop in 4,3 Amplitude Accounts for the 2,1 Seed Island

Non-axisymmetric field perturbation:

$$\tilde{\mathbf{B}}(\mathbf{r}, \xi, \mathbf{t}) = \nabla \times (\hat{z}\Psi(r, \xi, t))$$

Use radially localized helical current:

$$\tilde{\mathbf{j}}(r,\xi) = \tilde{\mathbf{j}}_{\circ}\cos(\xi)\delta(r_s - r)\mathbf{e}_z$$

Ampere's law gives [1,2]:

$$\Psi_{\delta}(r,\xi) = \frac{\mu_{\circ}\dot{j}_{\circ}}{m^2} f(r)\cos(\xi)$$

Model parameters are fully constrained by magnetic measurements.

$$f(r) = \frac{r^2}{r_s}$$
 at $r < r_s$, $f(r) = \frac{r_s^3}{r^2}$ at $r > r_s$

Energy Balance Shows Drop in 4,3 Amplitude Accounts for the 2,1 Seed Island

Non-axisymmetric field perturbation:

$$\tilde{\mathbf{B}}(\mathbf{r}, \xi, \mathbf{t}) = \nabla \times (\hat{z}\Psi(r, \xi, t))$$

Use radially localized helical current:

$$\tilde{\mathbf{j}}(r,\xi) = \tilde{\mathbf{j}}_{\circ}\cos(\xi)\delta(r_s - r)\mathbf{e}_z$$

Ampere's law gives [1,2]:

$$\Psi_{\delta}(r,\xi) = \frac{\mu_{\circ}\tilde{j}_{\circ}}{m^2} f(r)\cos(\xi)$$

- Model parameters are fully constrained by magnetic measurements.
- 1. Small modes at the wall represent significant magnetic perturbations in the core. Islands are localized at q=m/n, the TM eigenfunctions are not & strongly overlap.

Energy Balance Shows Drop in 4,3 Amplitude Accounts for the 2,1 Seed Island

Non-axisymmetric field perturbation:

$$\tilde{\mathbf{B}}(\mathbf{r}, \xi, \mathbf{t}) = \nabla \times (\hat{z}\Psi(r, \xi, t))$$

Use radially localized helical current:

$$\tilde{\mathbf{j}}(r,\xi) = \tilde{\mathbf{j}}_{\circ}\cos(\xi)\delta(r_s - r)\mathbf{e}_z$$

Ampere's law gives [1,2]:

$$\Psi_{\delta}(r,\xi) = \frac{\mu_{\circ}\tilde{j}_{\circ}}{m^2} f(r)\cos(\xi)$$

- Model parameters are fully constrained by magnetic measurements.
- 1. Small modes at the wall represent significant magnetic perturbations in the core. Islands are localized at q=m/n, the TM eigenfunctions are not & strongly overlap.
- 2. The 4,3 & 3,2 are large enough at q=2 to seed the 2,1.

Energy Balance Shows Drop in 4,3 Amplitude Accounts for the 2,1 Seed Island

Non-axisymmetric field perturbation:

$$\tilde{\mathbf{B}}(\mathbf{r}, \xi, \mathbf{t}) = \nabla \times (\hat{z}\Psi(r, \xi, t))$$

Use radially localized helical current:

$$\tilde{\mathbf{j}}(r,\xi) = \tilde{\mathbf{j}}_{\circ}\cos(\xi)\delta(r_s - r)\mathbf{e}_z$$

Ampere's law gives [1,2]:

$$\Psi_{\delta}(r,\xi) = \frac{\mu_{\circ} \dot{j}_{\circ}}{m^2} f(r) \cos(\xi)$$

- Model parameters are fully constrained by magnetic measurements.
- 1. Small modes at the wall represent significant magnetic perturbations in the core. Islands are localized at q=m/n, the TM eigenfunctions are not & strongly overlap.
- 2. The 4,3 & 3,2 are large enough at q=2 to seed the 2,1.
- 3. The observed drop of 4,3 magnetic energy at the time of seeding ($\sim JB^2dV$) accounts for 96% of the 2,1 seed island magnetic energy.

Fixed-Phase Relationships Are Identified by Bi-Coherence

• The bi-coherence is a statistical measure for quantifying the extent of phase coupling between frequency pairs in a single signal. Often used to identify non-linear interactions:

$$b^{2} = \left\langle \frac{|\langle F_{i,n}(f_{1})F_{i,n}(f_{2})F_{i,n}^{*}(f_{1}+f_{2})\rangle_{n}|^{2}}{\langle |F_{i,n}(f_{1})F_{i,n}(f_{2})|^{2}\rangle_{n}\langle |F_{i,n}^{*}(f_{1}+f_{2})|^{2}\rangle_{n}} \right\rangle_{i}$$

Fixed-Phase Relationships Are Identified by Bi-Coherence

 The bi-coherence is a statistical measure for quantifying the extent of phase coupling between frequency pairs in a single signal. Often used to identify non-linear interactions:

 $b^{2} = \left\langle \frac{|\langle F_{i,n}(f_{1})F_{i,n}(f_{2})F_{i,n}^{*}(f_{1}+f_{2})\rangle_{n}|^{2}}{\langle |F_{i,n}(f_{1})F_{i,n}(f_{2})|^{2}\rangle_{n}\langle |F_{i,n}^{*}(f_{1}+f_{2})|^{2}\rangle_{n}} \right\rangle_{i}$

Calculated in △t=70ms
 window centered at the
 2/1 seeding, averaged
 over 14 LFS midplane mag.
 probes.

Bi-coherence confirms
phase-locked state
between the 4,3 and 3,2,
as well as the 3,2, 1,1 & 2,1.

Bicoherence of magnetic probes (DIII-D #169537, Δt=4685-4755ms) 30 20 -requency [kHz] 4,3 coupled to 3,2 10 3,2 coupled to 1,1 & 2,1 20 10 30 Frequency [kHz]

Phase Relationships Between Coupled Islands Agree With Theory

The phase relationship between the 4, 3, 3, 2 & 2,1 is determined in the phase-locked state using the toroidal array of B_{θ} sensors @ LFS mid-plane.

Phase Relationships Between Coupled Islands Agree With Theory

- The phase relationship between the 4, 3, 3, 2 & 2,1 is determined in the phase-locked state using the toroidal array of B_{θ} sensors @ LFS mid-plane.
- The m,n island X-points (O-points)
 correspond to maxima (minima) of
 the corresponding nth harmonic.

The phase-locked state is characterized by the alignment of one of the X-points in the outboard mid-plane, in agreement w theory [1]

Summary

1. **Flux Tunneling** ruins the EC wave energy confinement in magnetic islands, which can hinder ECCD stabilization.

Summary

- 1. **Flux Tunneling** ruins the EC wave energy confinement in magnetic islands, which can hinder ECCD stabilization.
- 2. Heteroclinic Bifurcations form multiple 2,1 islands which complicate the EC wave launch geometry requirements, & possibly increases the threshold for NTM stabilization.

Summary

- 1. **Flux Tunneling** ruins the EC wave energy confinement in magnetic islands, which can hinder ECCD stabilization.
- 2. Heteroclinic Bifurcations form multiple 2,1 islands which complicate the EC wave launch geometry requirements, & possibly increases the threshold for NTM stabilization.
- 3. Nonlinear Three-Wave Interactions produce disruptive 2,1 NTMs in classically stable IBS plasmas w/o ELMs & satwooth crashes, which calls for high differential rotation at q=2 & avoidance of all tearing activity as much as possible.

Future work

1. Flux tunneling

 Quantitatively evaluate the degree of ECCD loss due to stochastization and it's impact within the MRE.

2. Heteroclinic bifurcation

- What causes heteroclinic bifurcations?
- How does the heteroclinic bifurcation impact the ECCD efficiency?
- Do coupling to other island chains affect the heteroclinic bifurcation?

3. Seeding by non-linear 3-wave interactions

- Can 3-wave seeding be removed by
 - high(er) differential rotation at q=2?
 - reducing the 1,1 mode amplitude with central ECH?
 - o removing the 3,2 mode with ECCD at q=1.5?

Thank You For Your Attention!

Extras

Heteroclinic Bifurcation: Result is Reproducible & Observed Only When 4/2 is Present

- Profile with split ΔT_e is seen in 50ms data in 25 thousand ECE points
- Time resolution of analysis does not affect the result.
- 2 more shots with the right conditions, both show signatures of ΔT_e splitting
- Discharges with $A_{4/2}/A_{2/1} < 10\%$ don't show peak splitting.

 $t_{center} = 1715.00ms (10ms)$

Heteroclinic Bifurcation: Possible Alternative Explanations?

- 1. High χ_{\perp} in the O-point region could cause flattening.
 - Why only in the middle, why is helically elongated, why not in the large island?
- 2. Large parallel diffusivity in the O-point region.
 - If so, the peak would get even more flat as the island grows because the connection length decreases with the island width.
 - It doesn't explain the elongated shape of the flat top of the ΔT_e peak. In an island with nested flux surfaces high χ_{\parallel} would lead to "circular" flat top.
- 3. Another island with m/n not equal to 2/1 could cause stochastization and flux tunneling if it is rotation coupled.
 - There are no such islands in this plasma
- 4. Modulation of rotation frequency could result in fake n=2 component. Analysis of spatial structure from toroidal array of magnetic probes confirms n=2 is real.

General reasons "for" that can't be explained by either of the above:

- the ΔT_e width correlates with expected O-point locations from the measured phase
- the narrowing of ΔT_e correlates with the n=2 amplitude
- 1-3 his should happen in other shots without m/n=4/2 islands

2/1 Seeding by Nonlinear Three-Wave Interaction is Observed in Multiple Discharges

