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====================================

Disruptions and runaway electrons cannot be tolerated in a fusion power plant.

Plasma steering is the primary method for avoidance but resembles driving at
high speed through a dense fog on an icy road [1].

====================================

To avoid disruptions, tokamaks must operate below the Greenwald density, nG ∝ I/a2.

This limits the plasma β,< βG ∝ T/(q95BR), and hence the fusion power density,
unless T is far above the optimal temperature for confinement, ≈10 keV.

For a DT burn [2], confinement needs to be ∼10 times better relative to gyro-
Bohm at 35 keV than at 10 keV.



Controls (actuators) for Steering [1]
Three are fast in present experiments, only one in a power plant.

1. Changes in the externally produced B field
Fast in JET and other existing tokamaks: 10’s of ms.
Slow in ITER and power plants: ≈ 0.6 s for wall penetration, ≈ 6 s due of voltage
limits on superconducting coils, ≈ 60 to shutdown plasma without a disruption [3].

2. Changes in power Input
Fast in non-DT burning plasmas; not directly controlled in DT-burning plasmas.

3. Particle or pellet injection
Fast ≈ 20 ms, but penetration to core difficult and provides only limited control.

Which Actuators Control Critical Profiles
1. What actuators control the current profile, which evolves in < 103 s?

2. What actuators control the pressure profile, which evolves < 5 s?

Changes in either profile can create a disruptive state. A fleck of wall material can
initiate a disruption in ∼ 30 ms.
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Required Warning Time and Reliability
Required time for reliable predictions in ITER is

60 s for a disruption-free shutdown [3], 6 s for con-
sistency with voltages on superconducting coils,
and 0.6 s for externally produced magnetic fields
to affect the plasma—similar in a power plant.

The longest internal time constant of an ITER-
scale, 10 keV plasma is 103 s ≈ 17 min for
poloidal flux dissipation by resistivity.

A power plant must operate years between major-
maintenance shutdowns, which means ∼ 105 flux-
dissipation time scales. The ITER mission is com-
promised if even one in a thousand discharges results in major machine damage from a
disruption or electron runaway.

Existing prediction techniques can reach 98 % reliability for a millisecond warning of
a disruption but the reliability drops precipitously for a 10 ms warning.

Both the warning time and the reliability fall many orders of magnitude short of
what is needed—a power plant has far fewer diagnostics.

RESEMBLES DRIVING AT HIGH SPEED THROUHGH A DENSE FOG.
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Resemblance to Driving on an Icy Road

1. When axisymmetric location-control is lost, it is usually impossible to regain control.

2. Even when the chamber walls are perfect conductors, a highly shaped plasma can be
vertically unstable [4–7].

Can cause unexpectedly large halo and induced currents—consistency with limits on
forces in ITER is unclear.

3. Magnetic surfaces can be rapidly lost throughout the plasma:

•Causes rapid loss of energetic electrons, but magnetic surface breakage needs to
last ∼ 15 ms to eliminate trapped electrons as a runaway seed.
• Flattens j||/B over full chaotic field line region, which makes rate of current decay

proportional to the resistivity near the wall [8].
•When sudden, can cause [8] collapse of electron pressure in ∼ 50 µs, as seen [9]

on DIII-D.

For the theory of fast magnetic surface breakup, which depends only logarithmi-
cally on resistivity, see

〈
https://arxiv.org/pdf/2107.02717.pdf

〉
.
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Empirical Confinement Gyro-Bohm Like [10]

Gyro-Bohm transport givesDgb =
ρs

a
ρsCs,∝

T 3/2

aB2

where Cs =
√
T/mi, ρs = Cs/ωci, a is minor radius.

Customary in empirical energy scaling laws to re-
place the temperature by the thermal power Pth.
De is enhancement over gyro-Bohm. Then [10]

τE ∝
a12/5R3/5n3/5B4/5

D2/5
e P

3/5
th

.

The standard stellarator empirical scaling law is

τ ISS04E ≡ 0.134
a2.28R0.64

P 0.61
th

n0.54B0.84ι0.412/3

fits both tokamak and stellarator data within ∼ 3.

Let ρs/a in gyro-Bohm be ρs/ιa for ι scaling of
τ ISS04E . Passing particles departure from magnetic surfaces
is qρ.
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Greenwald Limit n < nG ∝ I/a
2

1. Complicates shutdown of tokamaks. Must keep na2 < I

as I drops.

2. Limits β < βG, [2] where βG ∝ T/(q95B).

3. Need a high T >∼ 35 keV for enough β to achieve an
adequate fusion power density.
Fusion power density scales approximately as ∝ β2.

4. By forcing T from approximately 10 keV to 35 keV, the
Greenwald limit reduces the maximal acceptable trans-
port in a power plant [2] by an approximate factor of
ten.
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Energy confinement versus temperature issue
The DT power in α particles minus

bremsstrahlung losses divided by gyro-
Bohm energy transport is normalized to
its value at 10 keV.

Synchrotron emission is ignored, which
significantly degrades energy confine-
ment for T >∼ 35 keV .

Obtaining adequate en-
ergy confinement for fu-
sion is far more demanding
when the plasma tempera-
ture is far above 10 keV.
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Implications

Before a tokamak power plant is possible, inventions are
required:
•To ensure the disruptions and runaway electrons can be ef-

fectively eliminated.
•To overcome the tritium fuel-cycle issues reviewed [11] by

Abdou et al in Nuclear Fusion in 2021.
•Possibly, in order to obtain the required energy confine-

ment for T >∼35 keV.

A suitable invention is already known—the stellarator [2].
Even expending a few percent of the U.S. or EUROfusion

annual budget on reliable stellarator design is on indefinite
hold. Needlessly limits the rapid development of fusion.
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