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Outline 
•Advances in deep-learning-based disruption predictor
•Disruption relevant instability forecasts
•Design of real-time control schemes
• Physics-informed model for real-time plasma instability analysis



Introduction: FRNN disruption predictor

Advances in disruption predictor Other instability forecast Real-time control scheme           Physics informed simulator

• It is not just a RNN-based model, but 
synthetic software with  multiple built-in 
architectures (Deep: LSTM, TCN, 
TTLSTM, Classical:  /ML random forest,
xgboost,…)

• Less feature engineering -> Reliable 
performance for cross-machine predictions

• Fusion Recurrent Neural Network (FRNN) is software based on  
AI/DL/ML statistical methods designed for disruption predictions.

[Kates-Harbeck, J., Svyatkovskiy, A., and Tang, W., 
Predicting disruptive instabilities in controlled 
fusion plasmas through deep learning, Nature, vol
568, pp. 526–31, 2019]



Cross machine predictive capability

DIII-D JET

Different	wall	condition Cross	Machine
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Figure: DIII-D shot number 161362 in the left panel and DIII- shot number 170239 in the right panel.  Solid
red line: minimum warning time: 200 ms

Distinguishing disruptive and non-disruptive tearing modes
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Advances in disruption predictor

New architectures improve prediction accuracy
• Temporal Convolutional Neural Network (TCN) 

DIII-D	Training	ROC

JET	Test	ROC

[G Dong, KG Felker, A Svyatkovskiy, W Tang, J Kates-Harbeck
Journal of Machine Learning for Modeling and Computing 2 1 (2021)]



Advances in disruption predictor

• Convolutional Tensor-Train LSTM (TTLSTM) 

New architectures can improve early warning capability

Groups	previous	
hidden	 states Aggregates	Spatio-temporal	info



LSTM architecture on
Titan (OLCF)

TCN architecture on
Summit (OLCF)

Comparison of performance 
across 3 generations of NVDIA 
hardware 
(LSTM, batch_size = 256)
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Advances in disruption predictor

Effective utilization of HPC resources
• Engaging supercomputing resources effectively -> fast automatic hyperparameter tuning



Forecast of n=1 mode and locked mode

Other instability Forecast



Capability of forecasting mode locking 

Other instability Forecast

AUROC	=	0.87 Median	LM	alarm	
time	~250	ms



ELM forecasting capabilities

Other instability Forecast

#174819

#166671

#174966

Additional database:
• Pedestal parameters: 

peped, newid, neped, 
teped, tewid (Important) 

• Spectrogram (No effect 
on general performance)

• Rational surface 
positions (No effect on 
general performance, but 
affects specific ELM 
predictions)



Strong ELM predictive capability

Other instability Forecast

Next	ELM	prediction

• ELM regime prediction: a time step 
is considered ELMy regime if it is 1. 
during ELM, 2. going to ELM in the 
next 100ms

• If a time step is ELMy and predicted 
to be ELMy, it is considered TP 

test	AUROC:	0.902

• Next ELM prediction: for an 
ELM event if a warning is 
present within ‘Maximum 
warning time’ before it 
happens, it is a TP.

• For randomly selected non-
ELMy time chunk of length 
’maximum warning time’,  if 
warning exist within this 
chunk or within ‘Maximum 
warning time’ before it, it is a 
FP.

• Outputs can be connected to 
the PCS proximity 
controller for targeted 
instability control.



Sensitivity score heat-map of the shot #164582 

Contribution of signals to disruption score in individual shot

Real-time control scheme

Signal importance study: Test 
AUROC for models trained on single 
signal 



DIII-D shot #162975.   The upper panel shows the 
evolution of the plasma current (red line) and the 
FRNN output of the disruption score (blue line --
with the lower panel showing the sensitivity scores 
(for associated signals such as q95, etc.) at the time of 
the disruption alarm (red star in the upper panel). 

Real-time control scheme

Evolution of channel sensitivity



Active control scheme
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Change	in	time	to	ELM	when	signal	amplitude	is	decreased

• Active control 
scheme can be 
developed based on 
real-time sensitivity 
scheme results

• Problems: 1. Is the 
signal heatmap
’subjective’ to model? 
2. Is the correlation 
causal?

Real-time control scheme



Real-time implementation 

Real-time control scheme

[R Conlin et al. Keras2c: A library for converting 
Keras neural networks to real-time compatible C
Engineering Applications of Artificial Intelligence 100, 
104182 (2021)]

• FRNN has been implemented in DIII-
D PCS with Keras2C API to translate 
inference model into C language.

• Recent NVDIA product TensorRT can 
automate the process. Enabling easy 
and fast model maintenance and 
update.

• Figure:  FRNN disruption prediction 
computing time in DIII-D PCS



Motivation for physics-informed instability simulators
• First-principles based global plasma instability  simulation 

such as the gyrokinetic toroidal code (GTC) provides 
physics-based insights, for example, kink-like modes tearing 
modes, energetic particle (EP) modes, and detailed mode 
structure, to guide targeted real-time plasma control. 

• GTC can serve as an accurate plasma simulator for 
important instabilities such as various MHD modes, which 
can eventually lead to disruptions. 

• To make GTC available in real-time, we need a surrogate 
model to reduce simulation time (~hours) to model inference 
time (~ms).

Fishbones & kinks-tearing- LM->disruption

Figure: Example DIII-D shot #164670
MHD instabilities finally lead to mode locking and disruption.
Multiple modes can be coupling with complex dynamics. 

#164670

Physics informed instability simulator



• SGTC output 
àPCS for real-time 
MHD instability 
control
• SGTC outputs 
àother predictive 
algorithms such as 
FRNN models as an 
input, or simulator 
for disruption 
prediction and 
control.

Instability predictor 
workflow

Physics informed instability simulator



Benchmark of linear internal kink simulations
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Physics informed instability simulator



DIII-D equilibrium Data preparation

shot	number	 data

5758	equilibriums	 from	shot	
#	139520-180844

EFIT01	gfile

EFIT02	gfile

ZIPFIT01	electron	 temperature	
profile

ZIPFIT01	electron	 density	profile

ZIPFIT01	 ion	temperature	 profile

Magnetic	perturbation	
(mpi66M307D)

Magnetic	perturbation	
(mpi66M322D)

• Time sliced data are selected randomly 
from shot # 139520 to shot # 180844

• 5758 DIII-D equilibria simulated
• 2872 are based on EFIT01 output, and 

2886 are based on EFIT02 output. 
• These simulations have been carried out in 

12 GTC runs, each simulating 500 DIII-D 
experiments in parallel using 2000 nodes 
of the Summit supercomputer at ORNL 
for about 30 minutes (Summit has about 
4700 nodes). 

• ‘input tuner’ :ORBIT code [White 1984] 
to convert equilibrium data to Boozer 
coordinates 

Physics informed instability simulator



• Global electromagnetic simulations in the MHD 
limit are run for each input for 3000 time steps. time 
step size 0.01	"#$%	 	. 

• Filter: n=1.
• Typical physical duration :0.1 ms.
• ‘output analyzer’ : examine the output data, 

exclude numerical instabilities; prepare proper 
target data such as the mode growth rate, and 
poloidal eigenmode structure for SGTC. 

• n=1 mode growth rate is calculated with a linear fit 
of the perturbed parallel vector potential from the 
last 1000 time steps of the simulations. 

• 1972 equilibria have unstable n=1 kink modes.
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GTC kink simulations for 5000+ DIII-D equilibirums

Physics informed instability simulator



Growth rate distribution
GTC simulation results of all the 1972 unstable cases and 2531 stable cases are used for training (80% of 
the data), validation (10% of the data), and testing (10% of the data) of SGTC. 

SGTC trained to predictà 1. Instability; 2. Growth rate; 3. Mode structure

Physics informed instability simulator



Training results: 1. predict for instability
• classical algorithms vs deep neural 

network

• Trained multiple classical models in the 
sklearn package [sklearn]à the best 
performing one is the random forest model.

• Hand-tuned both the random forest model and 
the neural network for the instability 
prediction on the validation dataset, and 
reported the ROC curve on the test dataset. T

• he AUC for the deep learning based model 
(DL) and the random forest (RF) model on 
the test dataset are 0.945 and 0.927 
respectively

Physics informed instability simulator



Prediction of kink instability on test dataset from deep learning method in the left panel 
and random forest method in the right panel. Solid red dot represents the true positive 
(TP), solid blue triangle represents the true negative (TN), shaded circles represent the 
false positive (FP), and shaded triangles represent the false negative (FN).

Physics informed instability simulator



Training results: 2. predict for growth rate

Prediction results of the kink growth rate for entire test dataset. The left panel visualizes the true value of 
the growth rate vs the predicted value of the growth rate. The solid black line indicates x == y where 
perfect predictions occur. The right panel shows a histogram of prediction error.

• Random hyperparameter tuning on the validation set. 
• Inference time <1ms on Nvidia V100 GPUs (Princeton Traverse).

Physics informed instability simulator



Comparison of SGTC performance for all test dataset with random guess and analytic formula in the left panel. 
Right panel shows the comparison of SGTC performance with random guess, analytic formula for test data with 
kink growth rate smaller than 50 kHz. Yellow bar represents the difference between GTC and four other MHD-
based simulations [Brochard 2021] for DIII-D shot #141216 at 1750 ms

𝜸 ∝ 	𝒌𝒛𝟑	𝑽𝑨𝒓𝟐 (𝒒 = 𝟏@
[Rosenblueth 1973]

Physics informed instability simulator



Training results: 3. predict for mode structure

Figure: shot #162930 at 
1820 ms using EFIT01 
reconstruction &
shot #140510 at 3145ms 
using EFIT02 equilibrium 
reconstruction. 

• Random hyperparameter
tuning on the validation set.

• Around 85% test data output 
has qualitatively correct 
mode structure

Physics informed instability simulator



SGTC outputs evolution of the internal kink mode
Physics informed instability simulator



141216 Evolution of 2D mode structure

Physics informed instability simulator

• Future & Ongoing à
fishbone, tearing mode, 
Alfven eigenmode, and 
microturbulence, 
nonlinear dynamics, 
transport etc. 

• The methodology of 
SGTC can also be applied 
to training emulators for 
other first-principles 
plasma simulations such 
as the MHD codes.



Summary
• We developed the FRNN framework of deep learning based models for plasma 

instability predictions, including disruptions, n=1 mode, and ELMs. 
• Tested implementation in DIII-D PCS.
• Developed physics informed instability simulators for linear internal kink mode.
• SGTC shortens the simulation time by at least six orders of magnitudeà presents 

for the first time the possibility of bringing physics-based instability information from 
the first-principles based massively parallel simulations into the PCS of modern 
tokamaks. 

• The methodology of our deep learning plasma instability predictions and control can 
be easily applied to general plasma state and transient event predictions, showing 
promise for AI-based PCS capabilities in future plasma devices.

• Thanks!


