

Overview of latest runaway electron experiments and analysis at COMPASS

O. Ficker^{1,2,#}, E. Macusova¹, J Cerovsky^{1,2}, L. Kripner^{1,3}, A. Dal Molin⁴, G. Ghillardi⁵,

J. Caloud ^{1,2}, J. Mlynar^{1,2}, W. Bin⁶, F. Napoli⁵, P. Buratti⁵, C. Castaldo⁵, E. Panontin⁴,
M. Nocente⁴, M. Tardocchi⁶, M. Gobbin⁷, Y.Q. Liu⁸, P. Vondracek¹, A. Casolari¹,
M. Farnik^{1,2}, V. Weinzettl¹, J. Cavalier¹, J. Havlicek¹, A. Havranek¹, M. Imrisek^{1,3},
J. Svoboda^{1,2}, M. Hron¹, the COMPASS Team^{*}

#ficker@ipp.cas.cz¹IPP CAS, Prague, Czech Republic; ²FNSPE, CTU in Prague, Prague, Czech Republic;
 ³FMP, Charles university, Prague, Czech Republic; ⁴Universita degli Studi di Milano-Bicocca, Milan, Italy;
 ⁵ENEA, Frascatti, Italy; ⁶ ISTP-CNR, Milan, Italy; ⁷ Consorcio RFX, Padova, Italy; ⁸ General Atomics, San Diego, CA, USA;

*See author list of "M. Hron et. al 2021 'Overview of the COMPASS results' submitted to Nucl. Fusion"

- RE campaigns during COMPASS life-time
- Special diagnostics + pellet injector used in the last campaigns
- High energy RE beam equilibrium in the experiment
- Gas injection experiments
- Solid state pellet injection experiments
- RMP experiments
- Calorimetric head measurements
- Measurements of high frequency waves during RE experiments

RE campaigns in COMPASS life time

- **COMPASS** ITER-like shaped plasmas with $I_{p,max}$ = 400 kA, $B_{t,max}$ = 1.5 T, 2x 400 kW NBI, flexible diagnostics setup
- Runaway experiments run 2014-2020 within EUROfusion MST2-14, then MST1, MST1-Topic 8

2014-2015 – Low density discharges, MHD losses 2015-2016 – Massive gas injection into ramp-up 2017-now "Full conversion" RE beams flattop injection with secondary gas puffs, RMPs, pellet injection, enhanced diagnostics

Typical RE discharge

- Ar or Ne injection into 150 kA flattop of low-density discharge (1-2e19 m⁻³) with significant RE seed
- Generation of RE beam than can be further accelerated or is sustained with zero external loop voltage

Special hardware of last RE campagins

- Room temperature solid state pellet injector (Čeřovský, J. et al. EPS 2021, P4.1006)
 - Single stage gas gun with carbon pellets borrowed from AUG
 - Gas expansion system designed and built for COMPASS
- DIAGNOSTICS:
 - **REGARDS** HXR spectrometer base on LaBr3(Ce) scintillator
 - Other HXR detectors with spectrometric ability or HXR/neutron discrimination CeBr3, YAP, NaI(TI), NuDET Neutron
 - **Tipex3-based matrix SXR detectors** interaction at the HFS
 - **REIS 2** spectrometers capturing synchrotron radiation NIR region of interest on COMPASS
 - Set of ex-vessel and in-vessel MHz GHz antennas loop and log-periodic
 - Active injection of 500 MHz, 50 W EM waves via the loop antenna

Runaway electron beam equilibrium I

- Betatrons high current, plasma assisted (charge dilution), modified betatrons (B_t for ideal MHD stability)
 - For current 10 kA little spread in energy allowed, diamagnetic to paramagnetic transition, etc.
- Yoshida, NF 1990
 - tokamak geometry plasma + sum of elemental beams, total force balance, modified G.S. equation + equilibria shapes for different energies

$$\vec{j} \times \vec{B} - \sum_{b=1}^{N} n_b (\vec{\nu}_b \cdot \nabla) M_b \vec{\nu}_b - \nabla p = 0$$

- Application at COMPASS
 - RE energy estimated using very simplified formulation of the problem

 $E_{eta}[\mathrm{MeV}] = 3.75 eta_N a B_t$ $E_{FB}[\mathrm{MeV}] = Rc B_v^{an}/10^6$

Yoshida, NF 1990

FIG. 4. Equilibrium with $\gamma_0 = 7.93$, 10 kA: (a) drift surfaces for the beam, and for test particles with (b) $\gamma_0 = 7.73$ and (c) $\gamma_0 = 8.13$.

Finn and Mannerheim, Phys fluids 1988

Runaway electron beam equilibrium II

- Plasma and equilibrium field coil geometry in Biot-Savart solver
- Experimental plasma + coil currents reproduce EFIT configuration well
- HFS X-point with RE beam
- AXUV tomography and calorimetry point to strong heating of LFS limiter already before RE beam termination
- High energy fraction of the beam indeed LFS limited based on drift surfaces

Ficker, O., et. al. EPS 2021, P3.1034

Runaway electron beam equilibrium III

- Decreasing of I_p role in radial position control increasing of the role of E_{RE} – secures control of the RE beam
- The β_N and FB-based estimates of RE energy seem to agree in trends with HXR PHA energy and synchrotron radiation

Ficker, O et. al. NF 2019

- Various noble gases and N for beam triggering tested Ne and N produce significantly less HXR radiation and slower decay
- Intensive secondary D2 injection seems to stop the increase of RE energy, -U_{loop} only decreases current but increases energy

Room temperature solid state pellet injector results I – effect on the RE beam

RTSP

- single stage gas gun from AUG
- mm-sized carbon pellets
- Ar-propelled, velocities 100-400 m/s
- gas expansion system designed at COMPASS

#21290 - Ne generated RE beam reference

#21292 - Ne generated RE beam, without pellet injection (only propellant gas)

#21294 - Ne generated RE beam, with graphite pellet injection

Pellet ablates and then explodes

Video available here 21/07/2021

Cerovsky J. et al. EPS 2021 P4.1006, paper in preparation

Room temperature solid state pellet injector results II – RE beam triggered by pellet

- C pellet can generate RE beam from low density plasma
- Beam generated or not depending on the seed?
- Pellet dust distributed in the beam volume
- HXR counts and maximum energy significantly increased

Video available here

Cerovsky, J. et al. EPS 2021 P4.1006, paper in preparation

21/07/2021

RMP effect on the RE beam I

COMPASS RMP coils

- 4 toroidal sectors
- full poloidal coverage
- penetration time ~ 5ms
- ∘ $I_{RMP} \leq 3.5 \text{ kAt} \rightarrow B_r/B_T \leq 10^{-2}$

Effect of the RMP timing

- Pre-disruption = the early RE population
- Post-disruption = developed RE beam

Observed quantities

21/07/2021

- $\rightarrow \tau_{\text{REdecay}}$ RE current decay time (I_{RE} 120 kA \rightarrow I_{RE} 30 kA)
- \rightarrow **[HXR**^{*4} (**]** over **\tau**_{REdecay})

Macusova, E. et al. EPS 2021, 12.106

% drops of τ_{REdecav} and JHXR - RMP configuration effect

Effect of the RMP setup

• n=1 LFS OFF-mid $\Delta \Phi$ (4 options)

 \rightarrow large (all 4 toroidal RMP sectors used) or small (2 toroidal sectors of RMP coils used)

 \rightarrow the strongest phase ($\Delta \Phi$ =270°) identified experimentally and confirmed by MARS-F simulations

n=1 LFS ON-mid

 \rightarrow large (all 4 toroidal RMP sectors used) or small (2 toroidal sectors of RMP coils used)

 \rightarrow formation of non-rotating MHD $\rightarrow \delta B_r/B_T$ increased ~ 2 times

 \rightarrow pre-disruption RMP - stronger effect \rightarrow 2 most efficient RMP configurations identified

RMP effects on the RE beam II: n=1 LFS midplane – pre-disruption RMP

- similar effect as n=1 LFS off-midplane ΔΦ=270° → smaller RE energy and final RE impact
- formation of non-rotating MHD ("GAM") small effect on RE losses
- I_{RE} ~ 15 kA deconfined despite Ip feedback

Calorimetry of the runaway electron beam

Typical evolution of temperature at sensors

Calorimetry head measurements of RE beam in Kr and Kr+D2

Čaloud, J, master thesis MU Brno, paper in prep.

1st puff - standard valve - high Z (< 10¹⁹ m⁻³) calorimetry measurements^{*1, *2}

• E_{RE} (kJ) - average RE energy

P_{RE}(MWm⁻²) - incident power on deposited area

Ve	$\langle E_{RE} \rangle$ = (3.6 ± 0.1) kJ	$\langle P_{RE} \rangle$ = (7 ± 2) MW/m2
٨r	$\langle E_{RE} \rangle$ = (4.0 ± 0.7) kJ	$\langle P_{RE} \rangle$ = (15 ± 3) MW/m2
۲r	$\langle E_{RE} \rangle$ = (5.3 ± 0.7) kJ	$\langle P_{RE} \rangle$ = (30 ± 3) MW/m2

High frequency antenna measurements

System of antennas

(collaboration with ENEA & CNR Italy)

- 2 square loop in-vessel antennas (North and South midplane radial ports) - loop size (11x11 cm)
 - South loop (SL) two regimes receiving (R) and transmitting (T)

→ T: low power EM waves (35-60W) at ~ 500 MHz

- 1 twin square loop ex-vessel antenna in South & 1 logarithmic ex-vessel antenna in North
- 130 useful pulses acquired (whistler like, chirping, broadband HF emissions detected - as in DIII-D and FTU, KSTAR)

21/07/2021

Deuterium cyclotron frequency $f_{c} \mbox{=} 8.77~\mbox{MHz}$ at 1.15T

North & South in-vessels antennas used (SR: 625 Ms/s)

\rightarrow low fr. whistler like emissions

- \rightarrow Ne injection = rapid change of fr. of KI when Ne reached the plasma (no low fr. MHD changes)
- \rightarrow broadband RF emission followed by spikes on HXR and ECE signals, Ip drop

Macusova, E. et al. EPS 2021, I2.106 COMPASS RE experiments

Active antenna experiment

Transmitting antenna: functional prototype (5dBm \approx 55 W at 500 MHz) OFF/ON - entire shot \rightarrow enhanced activity at fr. > 750 MHz \rightarrow change of HXR activity, V-ECE, Ip \rightarrow E_{RE} remains similar

#21249 HXR spectra - 1*10⁴ counts/950-1298 ms

#21248 HXR spectra **2*10**⁴ counts/950-1292 ms

Macusova, E. et al. EPS 2021, I2.106

21/07/2021

COMPASS RE experiments

Conclusions

- Runway experiments conducted at COMPASS for 6 years, experience to be brought to COMPASS-Upgrade
- Pellet injector, HXR and synchrotron radiation spectrometry and high frequency antenna measurements realised in the last RE campaigns
- The runaway electron energy seems to has a very strong effect on the RE beam equilibrium in COMPASS
- Injection of higher-Z gases results typically in higher HXR fluxes and higher RE energy (calorimeter measurement) than lower Z gases
- The carbon pellets can cause RE beam generation from low density plasma and change properties of RE beam if injected into a developed one, the pellets typically explode
- RMPs in suitable configuration strongly enhance losses of RE
- Various high frequency modes observed in the low frequency plasmas with RE presence, waves of 500MHz actively launched