Dispersive shell pellet modeling and comparison with experimental trends*

V.A Izzo, Fiat Lux

Theory and Simulations of Disruptions Workshop

19-23 July 2021

*Accepted to PoP, Aug 2021

Hollmann, PRL 122, 065001 (2019)

The DSP Concept for disruption mitigation cools the plasma from the inside out

The DSP Concept for Disruption Mitigation cools the plasma from the inside out

In NIMROD simulations, the pellet is modeled as a moving source of neutral impurities

- Poloidal distribution is circular Gaussian
- Toroidal is periodic normal distribution (approximately Gaussian)

- Spatial distribution, pellet speed do not change
- Species (carbon → boron) and delivery rate do change

Non-constant shell ablation partially based on theory, calibrated to one experimental data point

Shell ablation (calibrated to one experimental data point at 230 m/s):

$$G(atoms/sec) = 1.44 \times 10^{11} T^{5/3} n^{1/3}$$

Payload delivery width of r/a=0.1 also matched to experiment. (Constant rate is backed out based on total quantity, pellet speed.)

Conclusions

- NIMROD modeling **reproduces three major trends** vs. pellet speed seen in DIII-D DSP experiments: TQ mitigation efficiency, RE production, and I_p-spike amplitude.
- For an inside out TQ, the plasma current spike is produced by **a double tearing mode** that produces stochasticity over a wide region of the plasma.
- In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive to numerical parameters in pellet model... but predictive modeling should be feasible in a more ideal DSP scenario

Conclusions

- NIMROD modeling **reproduces three major trends** vs. pellet speed seen in DIII-D DSP experiments: TQ mitigation efficiency, RE production, and I_p-spike amplitude.
- For an inside out TQ, the plasma current spike is produced by **a double tearing mode** that produces stochasticity over a wide region of the plasma.
- In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive to numerical parameters in pellet model... but predictive modeling may be feasible in a more ideal DSP scenario

First successful demonstration on DIII-D* showed various trends versus pellet velocity

Better TQ mitigation,... Smaller Ip spike,...

as pellet velocity is increased.

*Hollmann, et al, PRL **122**, 065001 (2019)

faster CQ...

more RE production,...

Three pellet speeds are compared in NIMROD modeling

NATIONAL FUSION FACILITY

9

Trend 1: Better TQ Mitigation with Faster Pellet

•

- Radiation fraction is large (>85%) in all simulations
 - Increases (pretty linearly) with pellet speed (less perturbation of the edge, faster radiation of the core thermal energy)
- Only 230 m/s case exceeds 90% (ITER target)

Trend 2: RE seed production only for fast pellet

 No RE generation model in NIMROD, but T-profile evolution consistent with hot-tail RE production only for fast pellet

- Fast cooling phase ends at lower T for 230 m/s pellet
- E/E_c>1 at end of fast cooling phase only for 230 m/s case

NATIONAL FUSION FAC

Trend 3: Smaller I_p spike for faster pellets

- (a) Ip spike (kA) 150 150 100 50 0 Ar Pl 100 150 200 250 Hollmann, PRL
- Trend is in the same direction in each case, although step-like behavior not seen in simulations (once again pretty linear)
- Smaller values similar to experiment, larger values a little lower

• Much more discussion on this in part 2 of talk ...

Discrepancy: Faster CQ for faster pellet

- Trend in CQ times in the simulations is the opposite
- Longest CQ cases in experiment look to have series of MHD events during CQ?

Conclusions

- NIMROD modeling **reproduces three major trends** vs. pellet speed seen in DIII-D DSP experiments: TQ mitigation efficiency, RE production, and I_p-spike amplitude.
- For an inside out TQ, the plasma current spike is produced by **a double tearing mode** that produces stochasticity over a wide region of the plasma.
- In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive to numerical parameters in pellet model... but predictive modeling may be feasible in a more ideal DSP scenario

Release of the payload forces current out of the center, increases q on-axis

Largest n=1 mode begins to grow after disappearance of the q=2 surfaces

V. Izzo/PPPL TSDW/July 2021

Mode has predominantly m=3 structure with a radially broad structure characteristic of a double tearing mode

Growth of 3/1 after q_{min} exceeds 2 is true in every case

I_p-spike coincides with reconnection at the x-point, reduction of closed flux volume

Halo current region appears after reconnection

20

Smaller I_p spike: less reconnected flux and less relaxed current profile

V. Izzo/PPPL TSDW/July 2021

Conclusions

- NIMROD modeling **reproduces three major trends** vs. pellet speed seen in DIII-D DSP experiments: TQ mitigation efficiency, RE production, and I_p-spike amplitude.
- For an inside out TQ, the plasma current spike is produced by **a double tearing mode** that produces stochasticity over a wide region of the plasma.
- In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive to numerical parameters in pellet model... but predictive modeling may be feasible in a more ideal DSP scenario

Every case modeled has some pre-TQ MHD

Neutral deposition width significantly impacts pre-TQ MHD

When the impurity source is more localized, 2/1mode is destabilized, ablation accelerates due to enhanced parallel heat transport ×10²⁰ 3.2 8.3 cm hw 4.2 cm hw 2.4 Z 1.6 Pellet direction 0.8 0.0 0.45 0.60 0.75 0.90 r/a

Good news: w/o pre-TQ MHD, ablation is not sensitive to deposition width

- Goal of DSP is to avoid pre-TQ MHD; simulation results are more optimistic for a predictive model in that case.
- Scaling to ITER may be favorable to a nonperturbative shell, due to reduced surface to volume ratio for larger DSPs-- assuming pellet speed can be increased significantly

Conclusions

• NIMROD modeling **reproduces three major trends** vs. pellet speed seen in DIII-D DSP experiments: TQ mitigation efficiency, RE production, and I_p-spike amplitude

 \rightarrow Ablation model calibrated to one data point; modeling predicts very high radiation fraction ~90%

- For an inside-out TQ, the plasma current spike is produced by a double tearing mode that produces stochasticity over a wide region of the plasma.
 Crows once a second 2: similar to the m-1 mode responsible for L spike
 - → Grows once q_{min} exceeds 2; similar to the m=1 mode responsible for I_p spike during an outside-in TQ
- In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive to numerical parameters in pellet model... but predictive modeling should be feasible in a more ideal DSP scenario

→ Scaling to ITER could be favorable in this regard... if higher velocity is achieved

Initial Simulations to assess scaling to ITER

• Have carried out some 2D scoping studies (just started 3D cases) to address some questions: What payload quantity (assuming Be rather than B) is needed to achieve TQ in ITER? 1)

/a

- 2) What shell thickness and speed is needed to reach the core?
- \rightarrow Scaling payload up from DIII-D by stored thermal energy ~ 360x does not by itself produce a TQ in ITFR
 - > Can get TQ with a small amount of high-Z, 0.1% W for instance
- \rightarrow Pure Be payload increase 1000x DIII-D does produce a TQ by itself
- \rightarrow Considered pellets 7x increase in radius and 10x in radius with 1x-2x shell thickness (50x – 100x surface area)

10x radius pellet, 1x shell thickness, 800 m/s... Payload release at r/a=0.2 7x radius pellet, 0.4 2x shell thickness, 1 km/s... past the magnetic axis 0.2

Time [ms]

Ablation rate is scaled with pellet radius as $r^{4/3}$

2.5

27

1.0 0.8 0.6 0.0 0.0 0.5 1.0 1.5 2.0