
1 V. Izzo/PPPL TSDW/July 2021

Dispersive shell pellet modeling and comparison with 
experimental trends* 

Hollmann, PRL 122, 065001 (2019)

V.A Izzo, Fiat Lux

Theory and Simulations of 
Disruptions Workshop 

19-23 July 2021

*Accepted to PoP, Aug 2021



2 V. Izzo/PPPL TSDW/July 2021

The DSP Concept for disruption mitigation cools the plasma 
from the inside out
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The DSP Concept for Disruption Mitigation cools the plasma 
from the inside out

Thin low-Z shell (diamond)

Dispersive payload 
(boron dust)

Pre-Thermal Quench Thermal Quench

r/a r/a

Te Te

shell ablates in 
edge Payload 

disperses in 
core

Some potential benefits include:
- Higher radiated energy fraction 

w/o massive high-Z injection
- Slower CQ

- Less runaway electron 
production 
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In NIMROD simulations, the pellet is modeled as a moving 
source of neutral impurities

• Poloidal distribution is circular 
Gaussian

• Toroidal is periodic normal 
distribution (approximately 
Gaussian)

• Spatial distribution, pellet 
speed do not change

• Species (carbon →boron) and 
delivery rate do change 
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Non-constant shell ablation partially based on theory, 
calibrated to one experimental data point

𝐺( Τ𝑎𝑡𝑜𝑚𝑠 sec) = 1.44 × 1011𝑇5/3𝑛1/3

Shell ablation (calibrated to one 

experimental data point at 230 m/s): edge

r/a=1 r/a=0.25 r/a=0.15

core

Payload delivery width of r/a=0.1 

also matched to experiment.
(Constant rate is backed out based 
on total quantity, pellet speed.)
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Conclusions

• NIMROD modeling reproduces three major trends vs. pellet speed seen in DIII-D DSP 
experiments: TQ mitigation efficiency, RE production, and Ip-spike amplitude. 

• For an inside out TQ, the plasma current spike is produced by a double tearing mode 
that produces stochasticity over a wide region of the plasma. 

• In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive 
to numerical parameters in pellet model… but predictive modeling should be 
feasible in a more ideal DSP scenario 
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First successful demonstration on DIII-D* showed various 
trends versus pellet velocity 

*Hollmann, et al, PRL 122, 065001 (2019)

Better TQ mitigation,…    Smaller Ip spike,…         more RE production,…       faster CQ…

as pellet velocity is increased.
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Three pellet speeds are compared in NIMROD modeling
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Trend 1: Better TQ Mitigation with Faster Pellet

Hollmann, PRL

• Radiation fraction is large (>85%) 
in all simulations 

• Increases (pretty linearly) with 
pellet speed (less perturbation of 
the edge, faster radiation of the 
core thermal energy)

• Only 230 m/s case exceeds 90% 
(ITER target)

NIMROD Modeling
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Trend 2: RE seed production only for fast pellet

Hollmann, PRL

• No RE generation model in NIMROD, 
but T-profile evolution consistent 
with hot-tail RE production only for 
fast pellet

230 m/s 

pellet

115 m/s 

pellet

• Fast cooling phase ends at lower T for 230 
m/s pellet

• E/Ec>1 at end of fast cooling phase only 
for 230 m/s case

Profiles beginning at payload release
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Trend 3: Smaller Ip spike for faster pellets

Hollmann, PRL

• Trend is in the same direction in each case, 
although step-like behavior not seen in 
simulations (once again pretty linear)

• Smaller values similar to experiment, 
larger values a little lower

• Much more discussion on 
this in part 2 of talk … 
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Discrepancy: Faster CQ for faster pellet

Hollmann, PRL

• Trend in CQ times in the simulations 
is the opposite

• Longest CQ cases in experiment look 
to have series of MHD events during 
CQ?

Hollmann, PRL
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Conclusions

• NIMROD modeling reproduces three major trends vs. pellet speed seen in DIII-D DSP 
experiments: TQ mitigation efficiency, RE production, and Ip-spike amplitude. 

• For an inside out TQ, the plasma current spike is produced by a double tearing mode 
that produces stochasticity over a wide region of the plasma. 

• In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive 
to numerical parameters in pellet model… but predictive modeling may be feasible
in a more ideal DSP scenario 
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Release of the payload forces current out of the center, 
increases q on-axis

Payload release

Safety factor
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Largest n=1 mode begins to grow after disappearance of the 
q=2 surfaces

n=1 magnetic 
energy

Safety factor
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Mode has predominantly m=3 structure with a radially broad 
structure characteristic of a double tearing mode

Broad region of stochasticity in the edge allows for 
flattening of the current profile across much of the 

plasma

Pritchett, Lee, 

Drake, Phys 

Fluids 23 (1990)
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Growth of 3/1 after qmin exceeds 2 is true in every case

n=1 magnetic 
energy

Safety factor
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Ip-spike coincides with reconnection at the x-point, reduction 
of closed flux volume

Poloidal flux 
inside separatrix

Open flux

Plasma Current

Safety factor
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Halo current region appears after reconnection

Poloidal flux 
inside separatrix

Open flux

Plasma Current

Ip minimum                              Ip maximum 
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Smaller Ip spike: less reconnected flux and less relaxed current 
profile

Ip min, 3.47 ms

Ip max, 3.70 ms

Ip min, 3.62 ms

Ip max, 3.90 ms
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Conclusions
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Every case modeled has some pre-TQ MHD

pellet

In most cases, the onset of a 1/1 mode in the 
core reduces the shell ablation rate prior to 
payload release

Pellet direction

pellet

8.3 cm hw

4.2 cm hw

Two 115 m/s cases with different Gaussian 
deposition width in the poloidal plane
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Neutral deposition width significantly impacts pre-TQ MHD

pellet

When the impurity source is more localized, 2/1 
mode is destabilized, ablation accelerates due to 
enhanced parallel heat transport

Pellet direction

pellet

8.3 cm hw

4.2 cm hw
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Good news: w/o pre-TQ MHD, ablation is not sensitive to 
deposition width

Pellet direction

8.3 cm hw

4.2 cm hw

• Goal of DSP is to avoid pre-TQ MHD; 
simulation results are more optimistic for a 
predictive model in that case.

• Scaling to ITER may be favorable to a non-
perturbative shell, due to reduced surface to 
volume ratio for larger DSPs-- assuming 
pellet speed can be increased significantly 
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Conclusions

• NIMROD modeling reproduces three major trends vs. pellet speed seen in DIII-D DSP 
experiments: TQ mitigation efficiency, RE production, and Ip-spike amplitude
→ Ablation model calibrated to one data point; modeling predicts very high 
radiation fraction ~90%

• For an inside-out TQ, the plasma current spike is produced by a double tearing mode 
that produces stochasticity over a wide region of the plasma. 
→Grows once qmin exceeds 2; similar to the m=1 mode responsible for Ip spike 

during an outside-in TQ
• In the presence of pre-TQ MHD, payload delivery can be unpredictable and sensitive 

to numerical parameters in pellet model… but predictive modeling should be 
feasible in a more ideal DSP scenario 
→Scaling to ITER could be favorable in this regard… if higher velocity is achieved
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Initial Simulations to assess scaling to ITER

• Have carried out some 2D  scoping studies (just started 3D cases) to address some questions:
1) What payload quantity (assuming Be rather than B) is needed to achieve TQ in ITER?
2) What shell thickness and speed is needed to reach the core?

→ Scaling payload up from DIII-D by stored thermal 

energy ~ 360x does not by itself produce a TQ in 

ITER

➢ Can get TQ with a small amount of high-Z, 

0.1% W for instance

→ Pure Be payload increase 1000x DIII-D does 

produce a TQ by itself

→ Considered pellets 7x increase in radius and  10x in 

radius with 1x-2x shell thickness (50x – 100x 

surface area)

Ablation rate is scaled with pellet radius as r4/3

7x radius pellet,

2x shell thickness, 1 km/s… 

past the magnetic axis

10x radius pellet, 

1x shell thickness, 800 m/s…

Payload release at r/a=0.2


