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The ITER Disruption Mitigation System –
Design progress and design validation

Michael Lehnen
for the ITER Disruption Mitigation Task Force

ITER Organization, Route de Vinon-sur-Verdon – CS 90 046, 
13067 St Paul Lez Durance Cedex – France

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take
place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect
those of the ITER Organization.
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 Present DMS design and design challenges
 Mitigation requirements
 Needs for injection quantity, species and location
 Injection scenarios
 Physics and technology activities within the DMS Task Force
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DMS design – key dates
2-3 June 2021 System Design Review meeting
June 2021 Freezing of interfaces with Diagnostic First 

Wall and Diagnostic Shielding Modules
Feb 2022 Preliminary Design Review
May 2022 Report to STAC
Q1/Q2 2023 Final Design Review
Q1 2024 Start manufacture and assembly of DMS 

equipment on port plugs
Q1 2025 Start of port plug testing 
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DMS design status

EP #02: 
12 injectors 

UP #02, #08, #14: 
each 1 injector 

EP #08, #17: 
each 6 injectors
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DMS design status
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DMS design: shattering unit
 Interface with the Diagnostic First Wall has been frozen
 Cut-outs and injection directions were defined
 Design is constrained by the challenging environment (heat loads)
 Shattering units still have some design flexibility

12º 15.5º 30º

DSM
Shattering angles from 12° to 30° can be accommodated
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DMS design: injection configuration
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16 – 8 pre-TQ injection 
(heat and EM load mitigation)

4 - 8  post-TQ RE mitigation

4 - 8  post-TQ RE mitigation

 Configuration choice takes into account the requirements for the different 
mitigation scenarios, need for redundancy, and technical constraints

EP#02 EP#08 EP#17
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DMS design: injection configuration
post-TQ RE mitigationpre-TQ injection

Major Disruption 
(baseline scenario) Upward VDE Downward VDE

(t@7.5 MA)
Upward VDE
(t@7.5 MA)
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DMS design: propellant gas
 Propellant gas entering the plasma before the fragments must be minimised
 Space restrictions  expansion volume ~50 l (JET 1000 l, AUG 300 l)
 Structures inside the expansion volume can delay the gas flow
 SOLPS and ASTRA simulations have been performed showing that about 

0.5% of the propellant gas could be acceptable
 Possible development of a fast shutter or propellant methods without gas
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 Present DMS design and design challenges
 Mitigation requirements
 Needs for injection quantity, species and location
 Injection scenarios
 Physics and technology activities within the DMS Task Force

Outline
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Mitigation requirements

The DMS mitigation action must target to result in disruptions of 

 Category I (EM loads) 
IP decay  ≥ 15 MA / 50 ms
IH(peak)  < 2.25 MA (DINA simulations: IP decay  < 15 MA / 150 ms)

 Category HL-I (thermal loads)
Melt limit of plasma facing components (see following slides)
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Mitigation requirements – Thermal loads

 Current and energy will be 
successively increased during the 
execution of the ITER Research Plan

 Thermal loads arise from 
thermal and magnetic energy

 Limits depend on wetted area and 
PFC material

 Thermal load mitigation relies on 
energy dissipation through radiation
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Mitigation requirements – Heat loads

 Current and energy will be 
successively increased during the 
execution of the ITER Research Plan

 Thermal loads arise from 
thermal and magnetic energy

 Limits depend on wetted area and 
PFC material

 Thermal load mitigation relies on 
energy dissipation through radiation
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Category I
IRE < 100 kA (FWP)
IRE < 150 kA (Divertor)
or
E / divertor cassette < 0.15 MJ
E / FWP < 0.3 MJ

Energy deposition 
on ITER FW 
panels (ENDEP)

Melting caused 
by RE impact 
in JET

G. F. Matthews et al., 
PFMC 2015

~90mm

Mitigation requirements – Runaway Electrons

Presently re-assessed with the
DINA-SMITER-GEANT4-MEMOS-U 
workflow (L. Chen, AAPPS-DPP 2021)
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Injection quantities & species
Purpose Species Quantity [atoms]* Injection Time Reference
Thermal load mitigation
Thermal Quench Ne

>8x1021 (pure Ne)
>1x1021 (with H)

pre-TQ 3D fluid 
simulations

RE avoidance 
(mixed pellets) H ~1.5-3x1024 pre-TQ 1D simulations

RE avoidance 
(staggered injection) H ~1x1024 pre-TQ Dilution cooling 

to Te ~ 1keV
Thermal load mitigation
Current Quench Ne > 2x1021 (pure Ne) pre-TQ or

post-TQ DINA

EM load mitigation
Current Quench Ne > 4x1021 (pure Ne)

< 5x1022 (pure Ne) pre-TQ / post-TQ DINA

RE impact mitigation 
(high-Z) Ne ~1x1025 post-TQ DINA

RE impact mitigation 
(low-Z) H ~2.5x1024 post-TQ JET data

*for the 15 MA baseline scenario
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Injection quantities & species

Thermal Energy Impact Mitigation
 Pre-TQ injection of Neon to increase Erad

 Addition of H for RE avoidance 
decreases required Ne quantity

 3D MHD simulations ongoing
 Experiments at KSTAR and AUG with 

enhanced radiation measurements

>1021 Ne atoms

TOKES simulations

Large pellet 
(2x1024atoms)

Small pellet 
(2x1023atoms)

Bremsstrahlung
Recombination Line Radiation

S. Pestchanyi et al., FED 2020 
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Injection quantities & species

CQ Thermal & EM load mitigation
 Pre-TQ or post-TQ injection of Neon to 

increase Erad

 100% reliability required at 15 MA
 Impact of H from RE avoidance to be 

assessed
 3D effects not considered and 

uncertainties in the halo model

>4x1021 Ne atoms

DINA simulations
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Injection quantities & species
Runaway Electron Avoidance
 Density increase: 

 dilution cooling 
prevent RE formation from hot tail 

 reduce avalanche multiplication 
Compton scattering/ T decay

 Self-consistent kinetic simulations 
needed incl. MHD driven transport

 3D MHD + seed formation?
J.R. Martín-Solís, 

NF 2017

~1.5 – 3 x 1024 H atoms

O. Vallhagen, 
master thesis 2020

P. Svensson,
arXiv:2010.07156
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Injection quantities & species

DINA high-Z simulations

Runaway Electron Impact Mitigation
High-Z
 Dissipate energy through collisions and 

radiation
 Higher efficiency of argon is 

compensated by its lower pellet density

IMAS disruption database: 100206/2, 100203/2, 100184/2 (https://confluence.iter.org/display/IMP/Disruption+database)

1025 atoms

https://confluence.iter.org/display/IMP/Disruption+database
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Injection quantities & species
Runaway Electron Impact Mitigation
High-Z
 Dissipate energy through collisions and 

radiation
 Higher efficiency of argon is 

compensated by its lower pellet density
 Cannot fully mitigate impact
 MHD to be taken into account

~ 1025 Ne atoms

DINA high-Z simulations

IMAS disruption database: 100204/2, 100194/2, 100203/2, 100184/2 (https://confluence.iter.org/display/IMP/Disruption+database)

https://confluence.iter.org/display/IMP/Disruption+database
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Injection quantities & species

Runaway Electron Impact Mitigation
Low-Z 
 Flush neon to prevent re-avalanching
 Initiate MHD driven loss without 

scraping-off
 3D MHD modelling ongoing

C. Paz-Soldan et al., 
IAEA FEC / NF 2021

> ~1023 H atoms (purge)
~8 x 1024 H atoms (no purge)
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Injection locations
Multiple injection locations
 Decrease the radiation peaking
 Could be beneficial to increase 

assimilation

3D MHD simulations ongoing
KSTAR experiments
Single injection locations:
Initial simulations: 
PF = 5.5-7.6
Initial experimental values:
TPF = 1.7-2.5 and PPF = 2.2

Assumption: PF ~ 5.5 / N ≥ 1

Number of required locations for HL-I

D. Shiraki et al., IAEA FEC 2021
N.W. Eidietis et al., PoP 2017

D. Hu et al., NF 2021
S. Pestchanyi et al., FED 2020 
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 Physics and technology activities within the DMS Task Force

Outline



M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

© 2021, ITER Organization
Page 26IDM UID: 5N6DHW

Mitigation Scenarios

Pre-TQ mixed injection

Pre-TQ staggered injection

Post-TQ mixed injection

Pre-TQ mixed injection (or other)
+ RE impact mitigation
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Quantities per pellet

Size of present ITER 
DMS pellets
D = 28.5 mm
L = 57.0 mm
Natoms = 1.9x1024 (H)
Natoms = 1.6x1024 (Ne)
H shell may be considered to 
to facilitate the pellet 
launching process
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Required number of pellets (15MA baseline)
Scheme Species and Quantities Number of pellets

(for different assimilation)
Injection
port

100% 50% 30%

Pre-TQ staggered
1x1024 H
5x1022 Ne (max)

3
3

3
3

3*

3** EP

Pre-TQ mixed 5x1022 Ne (max) + 
6x1024 H 4 7 11 EP

RE high-Z 1025 Ne 7 13 22 EP
RE low-Z 1023 – 8x1024 H 1 – 4 1 – 8 1 – 14 EP
Post-TQ 5x1022 Ne (max) 1 1 1 UP 

Total (EP)

Staggered + high-Z 13 19 29
Mixed + high-Z 11 20 33
Staggered + low-Z 7 – 10 7 – 14 7 – 20
Mixed + low-Z 5 – 8 8 – 15 12 - 25

** 3 injection locations for radiation flash mitigation* 3 injection locations to possibly avoid fast mode growth
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Required number of pellets
Theoretical maximum ablation 
(by a thermal plasma)
Lower limit for relevant ablation rates:

Δ𝑁𝑁 ≈
𝐸𝐸

3𝑘𝑘𝑇𝑇𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙

More pellets are likely needed:
 Injection from multiple locations
 Assimilation < 100%

SPI into high IP but low Eth cannot provide 
required ne for ‘classical’ RE avoidance
 Dilution cooling by staggered injection to 

prevent hot tail RE formation
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ITER Disruption Mitigation Task Force
Scope
 Design Specification through experiments and modelling
 Engineering studies to develop SPI technology and adapt to 

the ITER requirements 

Organized in three groups: 
 Experiments
 Modelling
 Technology
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Task Force - Experiments and Modelling
 Adequacy of the injection locations

 Efficiency of multiple simultaneous 
injections

 Efficacy of runaway electron 
avoidance and mitigation schemes

 Optimum fragment sizes and 
velocities for highest assimilation

 Required quantities, pellet 
compositions, injection sequences
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Task Force - Experiments
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injections

 Efficacy of runaway electron 
avoidance and mitigation schemes

 Optimum fragment sizes and 
velocities for highest assimilation

 Required quantities, pellet 
compositions, injection sequences

ASDEX Upgrade
Triple injector with different shatter ends

JET
Single triple injector

DIII-D
2 triple injectors toroidally 120° separated

KSTAR
2 triple injectors toroidally 180° separated

J-TEXT
Single Ar / single Ne injector with different L/D
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KSTAR with two SPI locations

ASDEX Upgrade with three shatter bends

Task Force - Experiments
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Task Force - Modelling
 Adequacy of the injection locations

 Efficiency of multiple simultaneous 
injections

 Efficacy of runaway electron 
avoidance and mitigation schemes

 Optimum fragment sizes and 
velocities for highest assimilation

 Required quantities, pellet 
compositions, injection sequences

JOREK (3D MHD + RE fluid model)
Code optimization, Benchmarking, 

post-TQ RE formation and RE termination phase 

INDEX (1D transport solver)
Validation (JET, KSTAR, DIII-D), Benchmarking, 
ITER simulations for extensive parameter range

JOREK (3D MHD)
Model optimization, ITER simulations

NIMROD/M3D-C1 (3D MHD)
Model optimisation, Benchmarking, Validation, 

ITER simulations

JOREK (3D MHD)
KSTAR SPI simulations

DREAM (kinetic/fluid RE code)
RE avoidance simulations incl. MHD driven transport
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 Efficacy of runaway electron 
avoidance and mitigation schemes

 Optimum fragment sizes and 
velocities for highest assimilation

 Required quantities, pellet 
compositions, injection sequences

JOREK (3D MHD + RE fluid model)
Code optimization, Benchmarking, 

post-TQ RE formation and RE termination phase 

INDEX (1D transport solver)
Validation (JET, KSTAR, DIII-D), Benchmarking, 
ITER simulations for extensive parameter range

JOREK (3D MHD)
Model optimization, ITER simulations
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Model optimisation, Benchmarking, Validation, 

ITER simulations

JOREK (3D MHD)
KSTAR SPI simulations
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3D MHD simulations with JOREK
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Task Force - Technology

 Ensure defined and reproducible pellet 
integrity and pellet acceleration

 Develop means to monitor the pellets 

 Optimise the flight path

 Guarantee reproducible pellet 
shattering with defined fragment sizes 
and injection plume characteristics
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Task Force - Technology

 Ensure defined and reproducible pellet 
integrity and pellet acceleration

 Develop means to monitor the pellets 

 Optimise the flight path

 Guarantee reproducible pellet 
shattering with defined fragment sizes 
and injection plume characteristics

Fundamental Studies
Systematic pellet formation and release studies for different 

pellet sizes

Support Laboratory
Test bench for ITER DMS components

Shattering tests with various geometries

Optical Pellet Diagnostic
Design and testing of a pellet monitor for integrity, orientation, 

velocity for the ITER DMS

ORNL support
Shattering studies with 28.5 mm (D) and 23 mm (H)

Propellant valve development
Shear strength measurements (pellet release)

Pellet dispersion
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Task Force - Technology

Optical Pellet Diagnostic 
integrated into the injector line

Test bench for the 
fundamental studies

Pellet growth simulations

CEA-Grenoble/DSBT

Fusion Instruments

Shear strength for 
dislodging pellets

T. Gebhart, 
IAEA FEC 2021
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Concluding Remarks
 The DMS design is progressing and interfaces with other tokamak 

components are successively frozen;

 The required quantities and injection locations have been assessed on the 
basis of present knowledge, confirming the present DMS layout;

 To address knowledge gaps and to develop the required technologies, the 
ITER Disruption Mitigation Task Force is running an extensive programme; 

 The task force work is complemented by significant activities within domestic 
R&D programmes.
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