The ITER Disruption Mitigation System – Design progress and design validation

Michael Lehnen

for the ITER Disruption Mitigation Task Force

ITER Organization, Route de Vinon-sur-Verdon – CS 90 046, 13067 St Paul Lez Durance Cedex – France

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

Outline

- □ Present DMS design and design challenges
- Mitigation requirements
- Needs for injection quantity, species and location
- Injection scenarios
- Physics and technology activities within the DMS Task Force

DMS design – key dates 2-3 June 2021 System Design Review meeting Freezing of interfaces with Diagnostic First June 2021 Wall and Diagnostic Shielding Modules Preliminary Design Review Feb 2022 **May 2022** Report to STAC Q1/Q2 2023 Final Design Review Start manufacture and assembly of DMS Q1 2024 equipment on port plugs Start of port plug testing Q1 2025

DMS design status

UP #02, #08, #14: each 1 injector

EP #02: 12 injectors EP #08, #17: each 6 injectors

DMS design status

DMS design: shattering unit

- Interface with the Diagnostic First Wall has been frozen
- Cut-outs and injection directions were defined
- Design is constrained by the challenging environment (heat loads)
- Shattering units still have some design flexibility

Shattering angles from 12° to 30° can be accommodated

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

DMS design: injection configuration

 Configuration choice takes into account the requirements for the different mitigation scenarios, need for redundancy, and technical constraints

DMS design: injection configuration

pre-TQ injection

post-TQ RE mitigation

iter china eu india japan korea russia usa

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

DMS design: propellant gas

- Propellant gas entering the plasma before the fragments must be minimised
- Space restrictions → expansion volume ~50 I (JET 1000 I, AUG 300 I)
- Structures inside the expansion volume can delay the gas flow
- SOLPS and ASTRA simulations have been performed showing that about 0.5% of the propellant gas could be acceptable
- Possible development of a fast shutter or propellant methods without gas

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

iter china eu india japan korea russia usa

Outline

- Present DMS design and design challenges
- Mitigation requirements
- Needs for injection quantity, species and location
- Injection scenarios
- Physics and technology activities within the DMS Task Force

Mitigation requirements

The DMS mitigation action must target to result in disruptions of

Category I (EM loads)

 $I_P \text{ decay} \ge 15 \text{ MA / 50 ms}$ $I_H(\text{peak}) < 2.25 \text{ MA} (\text{DINA simulations: } I_P \text{ decay} < 15 \text{ MA / 150 ms})$

Category HL-I (thermal loads)

Melt limit of plasma facing components (see following slides)

Mitigation requirements – Thermal loads

Mitigation requirements – Thermal loads

- Current and energy will be successively increased during the execution of the ITER Research Plan
- Thermal loads arise from thermal <u>and</u> magnetic energy
- Limits depend on wetted area and PFC material
- Thermal load mitigation relies on energy dissipation through radiation

Mitigation requirements – Heat loads

- Current and energy will be successively increased during the execution of the ITER Research Plan
- Thermal loads arise from thermal <u>and</u> magnetic energy
- Limits depend on wetted area and PFC material
- Thermal load mitigation relies on energy dissipation through radiation

Mitigation requirements – Runaway Electrons

Category I $I_{RE} < 100 \text{ kA (FWP)}$ $I_{RE} < 150 \text{ kA (Divertor)}$ or E / divertor cassette < 0.15 MJ E / FWP < 0.3 MJ

Presently re-assessed with the DINA-SMITER-GEANT4-MEMOS-U workflow (L. Chen, AAPPS-DPP 2021)

Outline

- □ Present DMS design and design challenges
- Mitigation requirements
- Needs for injection quantity, species and location
- Injection scenarios
- Physics and technology activities within the DMS Task Force

Purpose	Species	Quantity [atoms]*	Injection Time	Reference
Thermal load mitigation Thermal Quench	Ne	>8x10 ²¹ (pure Ne) >1x10 ²¹ (with H)	pre-TQ	3D fluid simulations
RE avoidance (mixed pellets)	Н	~1.5-3x10 ²⁴	pre-TQ	1D simulations
RE avoidance (staggered injection)	Н	~1x10 ²⁴	pre-TQ	Dilution cooling to T _e ~ 1keV
Thermal load mitigation <i>Current Quench</i>	Ne	$> 2 \times 10^{21}$ (pure Ne)	pre-TQ or post-TQ	DINA
EM load mitigation <i>Current Quench</i>	Ne	> 4x10 ²¹ (pure Ne) < 5x10 ²² (pure Ne)	pre-TQ / post-TQ	DINA
RE impact mitigation (high-Z)	Ne	~1x10 ²⁵	post-TQ	DINA
RE impact mitigation (low-Z)	Н	$\sim 2.5 \times 10^{24}$	post-TQ	JET data

*for the 15 MA baseline scenario

Thermal Energy Impact Mitigation

- Pre-TQ injection of Neon to increase E_{rad}
- Addition of H for RE avoidance decreases required Ne quantity
- 3D MHD simulations ongoing
- Experiments at KSTAR and AUG with enhanced radiation measurements

>10²¹ Ne atoms

🕻 🔍 China eu india japan korea russia usa

S. Pestchanyi et al., FED 2020

DINA simulations

CQ Thermal & EM load mitigation

- Pre-TQ or post-TQ injection of Neon to increase E_{rad}
 - 100% reliability required at 15 MA
 - Impact of H from RE avoidance to be assessed
 - 3D effects not considered and uncertainties in the halo model

>4x10²¹ Ne atoms

👖 🔁 china eu india japan korea russia usa

Runaway Electron Avoidance

- Density increase:
 - dilution cooling prevent RE formation from hot tail
 - reduce avalanche multiplication
 Compton scattering/ T decay
- Self-consistent kinetic simulations needed incl. MHD driven transport
- 3D MHD + seed formation?

~1.5 – 3 x 10²⁴ H atoms

ter china eu india japan korea russia usa

DINA high-Z simulations

Runaway Electron Impact Mitigation High-Z

- Dissipate energy through collisions and radiation
- Higher efficiency of argon is compensated by its lower pellet density

IMAS disruption database: 100206/2, 100203/2, 100184/2 (https://confluence.iter.org/display/IMP/Disruption+database)

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

DINA high-Z simulations

Runaway Electron Impact Mitigation High-Z

- Dissipate energy through collisions and radiation
- Higher efficiency of argon is compensated by its lower pellet density
- Cannot fully mitigate impact
- MHD to be taken into account

~ 10²⁵ Ne atoms

IMAS disruption database: 100204/2, 100194/2, 100203/2, 100184/2 (https://confluence.iter.org/display/IMP/Disruption+database)

📑 🔁 china eu india japan korea russia usa

C. Paz-Soldan et al., IAEA FEC / NF 2021 Runaway Electron Impact Mitigation Low-Z

- Flush neon to prevent re-avalanching
- Initiate MHD driven loss without scraping-off
- 3D MHD modelling ongoing

~10²³ H atoms (purge)
 ~8 x 10²⁴ H atoms (no purge)

🚺 🦳 china eu india japan korea russia usa

Injection locations

D. Shiraki et al., IAEA FEC 2021 N.W. Eidietis et al., PoP 2017 D. Hu et al., NF 2021 S. Pestchanyi et al., FED 2020

Multiple injection locations

- Decrease the radiation peaking
- Could be beneficial to increase assimilation

3D MHD simulations ongoing KSTAR experiments

Single injection locations:

Initial simulations: PF = 5.5-7.6

Initial experimental values: TPF = 1.7-2.5 and PPF = 2.2

IDM UID: 5N6DHW Page 24

Outline

- □ Present DMS design and design challenges
- Mitigation requirements
- Needs for injection quantity, species and location
- Injection scenarios
- Physics and technology activities within the DMS Task Force

Mitigation Scenarios

iter) china eu india japan korea russia usa

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

Quantities per pellet

Size of present ITER **DMS** pellets D = 28.5 mmL = 57.0 mm $N_{\text{atoms}} = 1.9 \times 10^{24} (\text{H})$ $N_{atoms} = 1.6 \times 10^{24}$ (Ne) H shell may be considered to to facilitate the pellet launching process

Required number of pellets (15MA baseline)

Scheme	Species and Quantities	Number of pellets			Injection	
		(for different assimilation)		lation)	port	
		100%	50%	30%		
Pre-TQ staggered	1x10 ²⁴ H	3	3	3*	EP	
	5x10 ²² Ne (max)	3	3	3**		
Pre-TQ mixed	$5x10^{22}$ Ne (max) +	1	7	11	ED	
	6x10 ²⁴ H	4				
RE high-Z	10 ²⁵ Ne	7	13	22	EP	
RE low-Z	$10^{23} - 8 \times 10^{24} \text{ H}$	1-4	1 – 8	1 – 14	EP	
Post-TQ	5x10 ²² Ne (max)	1	1	1	UP	
Total (EP)	Staggered + high-Z	13	19	29		
	Mixed + high-Z	11	20	33		
	Staggered + low-Z	7 – 10	7 – 14	7 – 20		
	Mixed + low-Z	5-8	8-15	12 - 25		

* 3 injection locations to possibly avoid fast mode growth ** 3 injection locations for radiation flash mitigation

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

ter china eu india japan korea russia usa

Required number of pellets

Theoretical maximum ablation (by a thermal plasma)

Lower limit for relevant ablation rates:

$$\Delta N \approx \frac{E}{3kT_e^{lim}}$$

More pellets are likely needed:

- Injection from multiple locations
- Assimilation < 100%

SPI into high I_P but low E_{th} cannot provide required n_e for 'classical' RE avoidance

→ Dilution cooling by staggered injection to prevent hot tail RE formation

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

iter china eu india japan korea russia usa

Outline

- □ Present DMS design and design challenges
- Mitigation requirements
- Needs for injection quantity, species and location
- Injection scenarios
- Physics and technology activities within the DMS Task Force

ITER Disruption Mitigation Task Force

Scope

- Design Specification through experiments and modelling
- Engineering studies to develop SPI technology and adapt to the ITER requirements

Organized in three groups:

- Experiments
- Modelling
- Technology

Task Force - Experiments and Modelling

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET Single triple injector

ASDEX Upgrade *Triple injector with different shatter ends*

J-TEXT Single Ar / single Ne injector with different L/D

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron \geq avoidance and mitigation schemes
- Optimum fragment sizes and \geq velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET Single triple injector

ASDEX Upgrade Triple injector with different shatter ends

J-TEXT Single Ar / single Ne injector with different L/D

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET Single triple injector

ASDEX Upgrade *Triple injector with different shatter ends*

J-TEXT Single Ar / single Ne injector with different L/D

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET

Single triple injector

ASDEX Upgrade *Triple injector with different shatter ends*

J-TEXT Single Ar / single Ne injector with different L/D

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET Single triple injector

ASDEX Upgrade *Triple injector with different shatter ends*

J-TEXT Single Ar / single Ne injector with different L/D

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

KSTAR

2 triple injectors toroidally 180° separated

DIII-D

2 triple injectors toroidally 120° separated

JET Single triple injector

ASDEX Upgrade *Triple injector with different shatter ends*

J-TEXT

Single Ar / single Ne injector with different L/D

ter china eu india japan korea russia usa

KSTAR with two SPI locations

ASDEX Upgrade with three shatter bends

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

iter china eu india japan korea russia usa

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen - Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen - Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

- Adequacy of the injection locations
- Efficiency of multiple simultaneous injections
- Efficacy of runaway electron avoidance and mitigation schemes
- Optimum fragment sizes and velocities for highest assimilation
- Required quantities, pellet compositions, injection sequences

NIMROD/M3D-C1 (3D MHD)

Model optimisation, Benchmarking, Validation, ITER simulations

JOREK (3D MHD)

Model optimization, ITER simulations

JOREK (3D MHD)

KSTAR SPI simulations

DREAM (kinetic/fluid RE code)

RE avoidance simulations incl. MHD driven transport

JOREK (3D MHD + RE fluid model)

Code optimization, Benchmarking, post-TQ RE formation and RE termination phase

INDEX (1D transport solver)

Validation (JET, KSTAR, DIII-D), Benchmarking, ITER simulations for extensive parameter range

M. Lehnen – Workshop on Theory & Simulations of Disruptions 19-23 July 2021

3D MHD simulations with JOREK

ter china eu india japan korea russia usa

- Ensure defined and reproducible pellet integrity and pellet acceleration
- Develop means to monitor the pellets
- Optimise the flight path
- Guarantee reproducible pellet shattering with defined fragment sizes and injection plume characteristics

- Ensure defined and reproducible pellet integrity and pellet acceleration
- Develop means to monitor the pellets
- Optimise the flight path
- Guarantee reproducible pellet shattering with defined fragment sizes and injection plume characteristics

Support Laboratory

Test bench for ITER DMS components Shattering tests with various geometries

Fundamental Studies

Systematic pellet formation and release studies for different pellet sizes

Optical Pellet Diagnostic

Design and testing of a pellet monitor for integrity, orientation, velocity for the ITER DMS

ORNL support

Shattering studies with 28.5 mm (D) and 23 mm (H) Propellant valve development Shear strength measurements (pellet release) Pellet dispersion

- Ensure defined and reproducible pellet integrity and pellet acceleration
- Develop means to monitor the pellets
- Optimise the flight path
- Guarantee reproducible pellet shattering with defined fragment sizes and injection plume characteristics

Support Laboratory

Test bench for ITER DMS components Shattering tests with various geometries

Fundamental Studies

Systematic pellet formation and release studies for different pellet sizes

Optical Pellet Diagnostic

Design and testing of a pellet monitor for integrity, orientation, velocity for the ITER DMS

ORNL support

Shattering studies with 28.5 mm (D) and 23 mm (H) Propellant valve development Shear strength measurements (pellet release) Pellet dispersion

- Ensure defined and reproducible pellet integrity and pellet acceleration
- Develop means to monitor the pellets
- Optimise the flight path
- Guarantee reproducible pellet shattering with defined fragment sizes and injection plume characteristics

Support Laboratory

Test bench for ITER DMS components Shattering tests with various geometries

Fundamental Studies

Systematic pellet formation and release studies for different pellet sizes

Optical Pellet Diagnostic

Design and testing of a pellet monitor for integrity, orientation, velocity for the ITER DMS

ORNL support

Shattering studies with 28.5 mm (D) and 23 mm (H) Propellant valve development Shear strength measurements (pellet release) Pellet dispersion

- Ensure defined and reproducible pellet integrity and pellet acceleration
- Develop means to monitor the pellets
- Optimise the flight path
- Guarantee reproducible pellet shattering with defined fragment sizes . and injection plume characteristics

Support Laboratory

Test bench for ITER DMS components Shattering tests with various geometries

Fundamental Studies

Systematic pellet formation and release studies for different pellet sizes

Optical Pellet Diagnostic

Design and testing of a pellet monitor for integrity, orientation, velocity for the ITER DMS

ORNL support

Shattering studies with 28.5 mm (D) and 23 mm (H) Propellant valve development Shear strength measurements (pellet release) Pellet dispersion

🕇 🔁 china eu india japan korea russia usa

Concluding Remarks

- The DMS design is progressing and interfaces with other tokamak components are successively frozen;
- The required quantities and injection locations have been assessed on the basis of present knowledge, confirming the present DMS layout;
- To address knowledge gaps and to develop the required technologies, the ITER Disruption Mitigation Task Force is running an extensive programme;
- The task force work is complemented by significant activities within domestic R&D programmes.