

IAEA-PPPL Alpha particle dynamics and Alfvénic instabilities in ITER post-disruption plasmas

[Lier et al, NF 2021]

Andrej Lier¹, Gergely Papp¹, Philipp Lauber¹, O. Embreus², G. J. Wilkie³, S. Braun⁴

¹IPP, Garching ²Chalmers, Gothenburg

³PPPL, Princeton ⁴RWTH, Aachen

Physical Concept

Context – Experimental observations (1/2)

Present day tokamaks already observe post-disruption modes

AUG

DIII-D

Spectograms of DIII-D [Lvovskiy, PPCF, 2018]

Context – Experimental observations (2/2)

Present day tokamaks already observe post-disruption modes

Current quench spectogram of JET #89141. [S. Newton, P. Pölöskei]

54.76

54.78

Current quench spectogram of JET DT shot #42976. [S. Sharapov]

Time (s)

54.74

54.72

Alpha particles – velocity distribution

Fig. 1CODION¹ simulation: Isotropic alpha particle velocity distribution for ITER 15MA scenario² #2

Fusion born alpha population is energetic by nature:

*damping dominated by Landau damping ~ exp(-T)

Alpha particles – delayed thermalization

VIDEO

CODION¹ simulation: initial alpha distribution undergoing thermal quench.

Consider 'worst case', unmitigated disruption:

$$T(r,t)=T_f+[T(r,0)-T_f]\exp(-t/t_0)$$

with Fokker-Planck solver CODION¹

Collisional cooling ineffective for energetic particles

Resonances possible far into the thermal quench

Workchain towards post-disruption Eigenmodes

¹Lauber, JCP, 2007 ... ²Hirshman, CPC, 1986 ³Papp, NF, 2013 **Eigenmodes** ³Vallhagen, JPP, 2020 LIGKA¹ MHD spectrum & damping Plasma equilibrium Current GO^3 density profile

Workchain towards post-disruption Eigenmodes

¹Lauber, JCP, 2007 ... ²Hirshman, CPC, 1986 ³Papp, NF, 2013 **Eigenmodes** ³Vallhagen, JPP, 2020 LIGKA¹ MHD spectrum & damping Plasma equilibrium VMEC² Current Pressure GO^3 density **CODION** profile profile

Current density profile j(r,t)

GO code solves the induction equation in 1D

→ Electric field diffusion→ RE generationj(r,t)

Fig.2 Currents of an unmitigated disruption identified by T_f =3eV and t_0 =0.7ms and its background temperature

- 6 T ~ 100 eV: Alphas thermalize
- 8 T < 100 eV : Avalanching

Resulting profiles of safety factor q, current density j and integrated current l.

Workchain towards post-disruption Eigenmodes

Eigenmodes in the ideal MHD spectrum

LIGKA tool employed:

- found frequency gaps for TAEs (and BAEs) in the ideal MHD spectrum
- scan over absolute scaling of q-profile (fig.
 6a) shows vast availability irrespective of q₀

Active mode evolution

evolves mode through EPs and redistributes EPs through modes

 $max(\delta B/B) \sim 0.1\%$ **before** RE avalanching

Fig.5 Evolution of mode amplitude $\delta B/B$ as caused by resonant interaction with f_{SD} in multimode simulation.

Mode effects on RE dynamics

 $max(\delta B/B) \sim 0.1\%$ before RE avalanching

→ effects on RE dynamics?

- HAGIS simulation indicating RE radial transport¹
- Study² found (stochastic) mag. Perturb (~0.05%) sufficient for RE avalanche suppression
- Further study: use ASCOT³ to determine transport coefficients as a function of (E,λ,r) for REs

¹[Lier, NF, 2021] ²[Svensson, JPP, 2021] ³[Schneider, NF, 2019]

Outlook – Limiting assumptions

Proof of principle stage¹:

- Unmitigated disruptions
 - Perfect alpha particle confinement

Ongoing work:

- (simple) mitigated scenarios
 - Alpha particle transport

¹[Lier et al, NF 2021]

Ongoing work – Addressing limiting assumptions

1. Mitigated disruptions

To assess the increased parameter space:

Alpha distribution now calculated by analytical model (O. Embreus)

$$f_{\alpha}(r,t,v)$$

$$\uparrow$$

$$T(r,t), n_{e}(r,t)$$

lon composition secondary to collision dynamics

→ use ions to tune v_Δ?

Fig
Analytical (dashed) vs CODION (dashed) results
for alpha population in mitigated disruption

Ongoing work – Addressing limiting assumptions

2. Alpha particle transport

Avoid MHD simulations for the entire parameter space:

Solve diffusion equation

$$\frac{\partial u(r,t)}{\partial t} = D(t) \frac{\partial^2 u(r,t)}{\partial r^2}$$

with

$$D(t) = D_0 \exp(-t/t_0)^1$$

and scan D₀ for stochasticity

Ongoing work

Summary & Outlook

- Showed survivability of the energetic tail of a fusion-born alpha population far into the thermal quench
- The post-disruption MHD spectrum shows availability of a wide range of Toroidal Alfvén Eigenmodes which experience low damping
- Wave-particle interaction showed those TAEs to be driven unstable by the alpha population up to amplitudes of $\delta B/B = 0.1\%$
- The modes driven indicate a capability to enhance RE transport → effect on RE dynamics (suppression?)
- Ongoing work: Analytical model to scan big parameter space (mitigated disruptions) and search for optimum for this mechanic

Backup – Ongoing work

Backup – Ongoing work

Backup - Mode effects on a RE seed

Which mode amplitudes to choose? We are already $3t_N$ into the disruption and at $6t_N$ damping and avalanching becomes significant.

Currents of an unmitigated disruption identified by $T_f=3eV$ and $t_o=0.7ms$ and its background temperature

Backup - Mode effects on a RE seed

RE seed initialized:

$$E_{kin} = [10 \, keV - 30 \, MeV]$$

$$\lambda = v_{\parallel} / v = [0 - 1]$$

$$r/a = [0.05 - 0.45]$$

Each triple combination represented by 25 REs, 0.9 uniformly distributed along torus. 0.8 $\Sigma \# REs = 10000$

Throughout interaction measure changes to the

$$P_{\phi}(p_{||}$$
 , $\Psi_{p})$

as indication to changes of radial position.

toroidal angular momentum

Fig.10

Ensemble-averaged change to P_{ϕ} of the RE seed as caused by the TAEs.

X and y-axis show initial RE attributes, color indicates change after t_N =2. The Radii of the circles are the initial radial position of the particle in r/a=[0.05-0.45] in steps of 0.1.

Backup – mode structures

Mode structures for $q_0 = 1.07$

→ total structure is <u>core</u><u>localized</u> along flat shear

Damping strengths γ/ω [s⁻¹/s⁻¹]:

- Landau+radiative (LIGKA) $\sim 0.1\%$ ($t_N = 3$)
- Fluid damping (CASTOR¹) ~ 1% (t_N = 8)
- Collisional damping² ~1% (t_N = 6)

Fig.6 Selected TAE modestructures for q_0 =1.07. Normalized amplitude of the real part with respective frequencies ω_{TAE} [kHz]. b) shows m=n,n+1 coupling and c) shows m=n+1,n+2 coupling.

¹[Kerner, JCP, 1998] ²[Gorelenkov, PS, 1992]

Backup – JET supershot

Backup – TEXTOR case

Fig.1: Plasma current evolution and Mirnov coil signals from TEXTOR shots #115207-8 (2013)

- Case of lower B_T shows strong coherent magnetic oscillations:
 - Toroidal Alfvén Eigenmode (TAE) identified as the cause of runaway electron suppression
 - Studies [1] estimated turbulence threshold level dB/B ~ 0.1% for suppression

ITER: could alpha particles provide drive for RE-suppressing modes?

Backup – pressure profile

$$p(r,t) = n_e \, T_e(r,t) + n_{D,T} \, T_i(r,t) + p_\alpha(r,t)$$
 with
$$n_e = n_{D,T} = 10^{20} \big[m^{-3} \big]$$
 and
$$T(r,t) = T_f + \big[T(r,0) - T_f \big] \exp \big(- t/t_0 \big)$$

$$\frac{p_{\alpha}(r,t) = \frac{m_{\alpha}}{3} \int v^4 f_{\alpha}(v,r,t) dv}{\downarrow}$$

CODION is 0D in space: Each of the 100 radial points is populated by velocity distributions $f_{\alpha}(v,r,t)$ advancing independently in time

Assumes case of good post-disruption confinement, as is also necessary for RE beam

Fig.2 CODION simulation: Initial fusion born alpha particle population on axis $f_{\alpha}(v,0,0)$

Backup - active mode evolution

Energetic part of CODION obtained data is fitted with the analytic slowing down formula 1 $f_{\rm SD}$

$$f_{SD}(r, v, t_N = 3) = \frac{C(r)}{v_c^3(r) + v^3} Erfc\left(\frac{v - v_\alpha}{\Delta v(r)}\right)$$

Fig.7 Pressure and temperature profiles for t_N =3. Note that $p_{\alpha,EP}$ is used for mode drive, not p_{α} , since the latter is misleading (due to CODION particle conservation)

Backup plots

