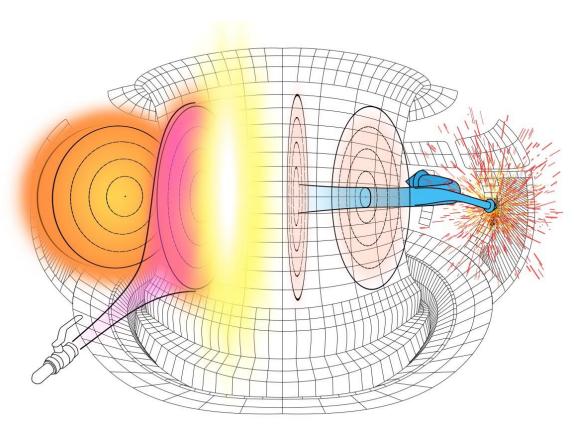


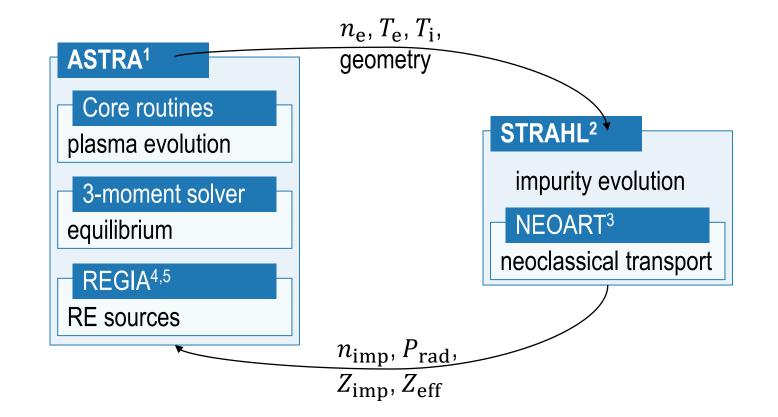
The role of impurity transport and temperature in MGI induced runaway dynamics

<u>O. Linder¹, G. Papp¹, E. Fable¹, F. Jenko¹, G. Pautasso¹, the ASDEX Upgrade Team[†] and the EUROfusion MST1 Team[‡]</u>

¹Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
 [†] See author list of H. Meyer et al. *Nucl. Fusion* 59, <u>112014</u> (2019)
 [‡] See author list of B. Labit et al. *Nucl. Fusion* 59, 086020 (2019)


This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline


1. The transport model ASTRA-STRAHL

- 2. ASDEX Upgrade runaway electron experiments
- 3. Simulating ASDEX Upgrade #33108
 - a. Runaway electron generation
 - b. The role of impurity transport
 - c. Impact of pre-disruption temperature
- 4. Conclusions

ASTRA-STRAHL: the coupled transport codes

¹ Fable et al. *Plasma Phys. Control. Fusion* **55**, <u>074007</u> (2013) ² Dux et al. *Nucl. Fusion* **39**, <u>1509</u> (1999) ³ Peeters. *Phys. Plasmas* **7**, <u>268</u> (2000) ⁴ Linder et al. *Nucl. Fusion* **60**, <u>096031</u> (2020) ⁵ Linder et al. J. Plasma Phys. 87, <u>905870301</u> (2021)

ASTRA-STRAHL: background plasma evolution with ASTRA

Evolution of plasma quantities Y through macroscopic transport equation¹

$$\frac{1}{V'}\frac{\partial}{\partial t}(V'Y) = \frac{1}{V'}\frac{\partial}{\partial \rho}\left(V'\langle (\nabla \rho)^2 \rangle \left[D\frac{\partial Y}{\partial \rho} - \nu Y\right]\right) + \sum_i S_i$$

Temperatures T_e , T_i

- Ohmic heating
- Impurity radiation
- Electron-to-ion heat exchange
- Rapid transport during breakup of magnetic surfaces^{2,3} (more on this later)

Poloidal flux Ψ

- Influenced by RE generation
- $j_{\rm p}$ profile flattened during TQ onset

Electron density $n_{\rm e}$

• From quasineutrality

ASTRA-STRAHL: impurity evolution with STRAHL

Evolution of plasma quantities *Y* through macroscopic transport equation

$$\frac{1}{V'}\frac{\partial}{\partial t}(V'Y) = \frac{1}{V'}\frac{\partial}{\partial \rho}\left(V'\langle(\nabla\rho)^2\rangle\left[D\frac{\partial Y}{\partial \rho} - \nu Y\right]\right) + \sum_i S_i$$

Impurity densities

- Charge state resolved
- Atomic processes: electron-impact ionization and recombination (coefficients from ADAS¹)
- Neoclassical transport from NEOART²
- Neutral gas propagation at speed of sound
- Rapid transport during breakup of magnetic surfaces^{3,4} (more on this later)
- Impurity radiation from line radiation, continuum radiation and ionization losses

ASTRA-STRAHL: Runaway Electron Generation In ASTRA (REGIA)

Evolution of plasma quantities *Y* through macroscopic transport equation

$$\frac{1}{V'}\frac{\partial}{\partial t}(V'Y) = \frac{1}{V'}\frac{\partial}{\partial \rho}\left(V'\langle(\nabla\rho)^2\rangle\left[D\frac{\partial Y}{\partial \rho} - vY\right]\right) + \sum_i S_i$$

Runaway electron current density

- Runaway sources S_i from standalone Fortran module (<u>github.com/o-linder/runawayelectrongeneration</u>)
- Separate populations of RE due to different generation mechanisms
- Average velocity $\langle v_{\rm RE} \rangle = c$
- No RE losses
- Feed-back on Ψ evolution

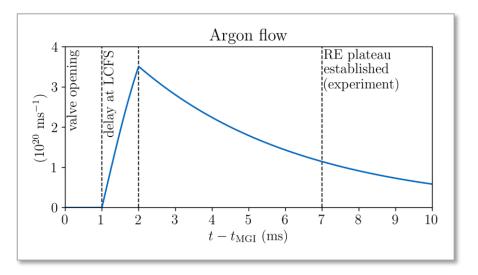
Fortran module¹

Dreicer generation

- Classical model by Connor & Hastie²
- CODE neural network by Hesslow et al³
- Hot-tail generation
 - Model by Smith & Verwichte⁴
- Avalanche generation
 - Classical model by Rosenbluth & Putvinski⁵
 - High-Z model by Hesslow *et al*⁶
- Nuclear generation: not implemented (Recall, application to ASDEX Upgrade)

ASTRA-STRAHL: Description of MGI and TQ

7/23

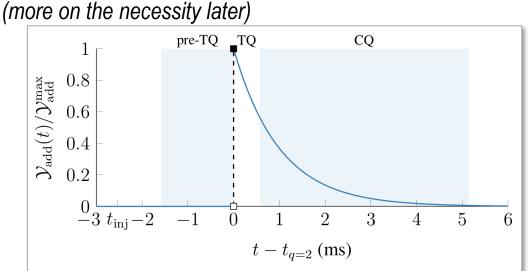

Massive gas injection

- Outflow from gas valve described by continuity equation¹
- Inward propagation with thermal velocity (for Ar):

$$v_{\rm th} = \sqrt{T/m} = 246 \,\mathrm{m/s}$$

- In AUG: valve opens within 1 ms
- In ASTRA: source located 1 cm outside LCFS
 → 1 ms delay

(no need to model propagation from valve to LCFS)

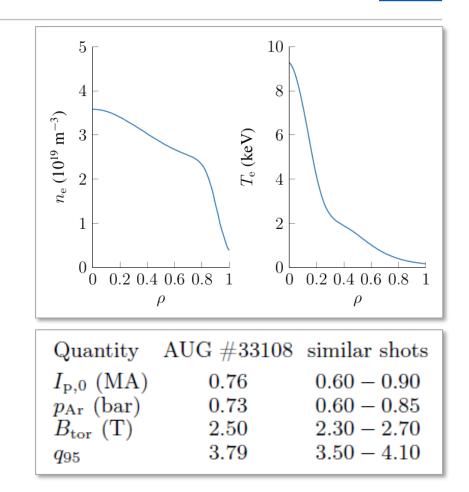


Break-up of magnetic surfaces / onset of TQ

- Cold gas front reaches q = 2 surface, triggers (m, n) = (2,1) MHD modes (+ higher harmonics)
- In experiment: flattens j_p profile, drop in l_i , I_p spike

• In ASTRA^{2,3}:
$$j_p$$
 flattened when $\left|\frac{\mathrm{d}j_p}{\mathrm{d}\rho}\frac{1}{j_p}\right| > 50$ at $q = 2$

• Additional transport: $\mathcal{Y}_{add}(t) = \mathcal{Y}_{add}^{\max} \exp\left(-\frac{t-t_{q=2}}{\tau_{add}}\right)$

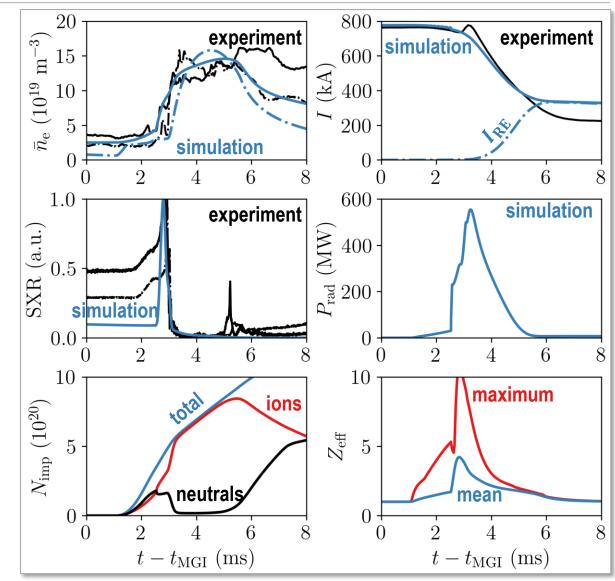

ASDEX Upgrade runaway electron experiments¹⁻³

MGI in AUG #33108

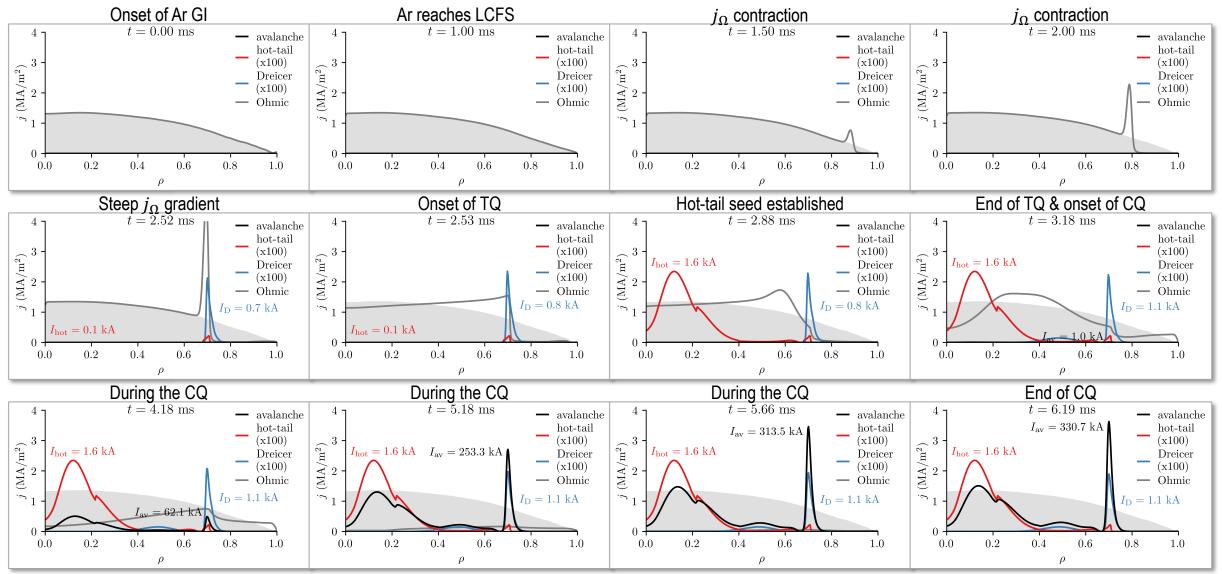
- Circular L-mode limiter plasma
- Low density $(3 \times 10^{19} \text{ m}^{-3})$, high temperature (9 keV)
- Central ECRH (2.6 MW)
- Argon injection (0.73 bar \times 100 cm³ \sim 7 N_D)

Application

- Used as base case for simulations
- Similar discharges selected for comparison of simulations with experimental trend (impact of $T_{\rm e}$)


Simulating ASDEX Upgrade #33108

Key experimental observations reproduced


- Increase of electron density \bar{n}_{e}
- Decay of plasma current $I_{\rm p}$
- Occurrence of TQ

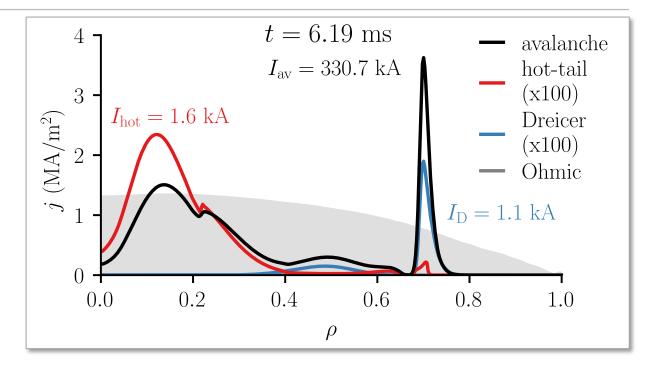
Simulation features

- Density increase reproduced
 → current decay reproduced
- Density increase requires additional transport $D = 100 \text{ m}^2/\text{s}, \quad v = -1000 \text{ m/s},$ $\tau = 1.0 \text{ ms}$
- Thermal energy dissipated by impurity radiation
- Ohmic heating during $CQ \rightarrow prolonged$ radiation
- Distinct phases of disruption covered (pre-TQ, TQ, CQ)

Runaway electron generation: current evolution

Runaway electron generation: contributions

Seed generation

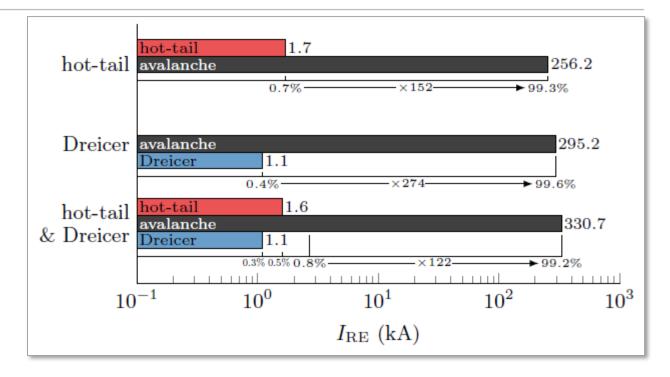

- Only a few kA
- Similar contributions by hot-tail & Dreicer mechanisms

Avalanching

- Seed multiplication
- Generates 331 kA of REs
- Final RE beam avalanche dominated
- → RE seed of minor importance (varying strength & composition)

Experimental comparison

• Higher $I_{\rm RE}$ simulated due to absence of RE losses


Runaway electron generation: impact of the RE seed

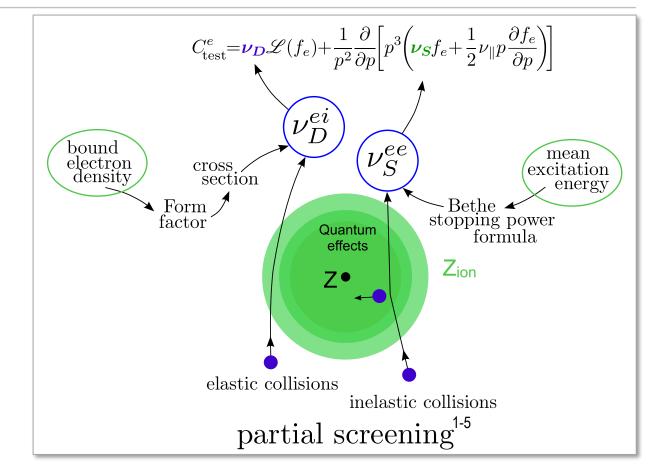
Comparison with only one seed mechanism used

• Reduction of I_{RE}^{seed} does not affect RE multiplication with equal weight:

hot-tail: $-37\% I_{RE}^{seed} \rightarrow -23\% I_{av}$ Dreicer: $-59\% I_{RE}^{seed} \rightarrow -11\% I_{av}$

- Decay of I_{Ω} at similar time scales, avalanche multiplication time determines post-CQ I_{RE} (feedback on Ψ -evolution)
- → Exact strength of RE seed is of secondary importance due to dominating avalanche generation

Runaway electron generation: impact of partially ionized impurities


Impact of partially ionized impurities¹⁻⁵

- Increased electron-ion friction \rightarrow hinders runaway
- Relevant in MGI scenarios
- Classical formulae⁶⁻⁷ assume full ionization
- Effects considered in state-of-the-art models⁴⁻⁵

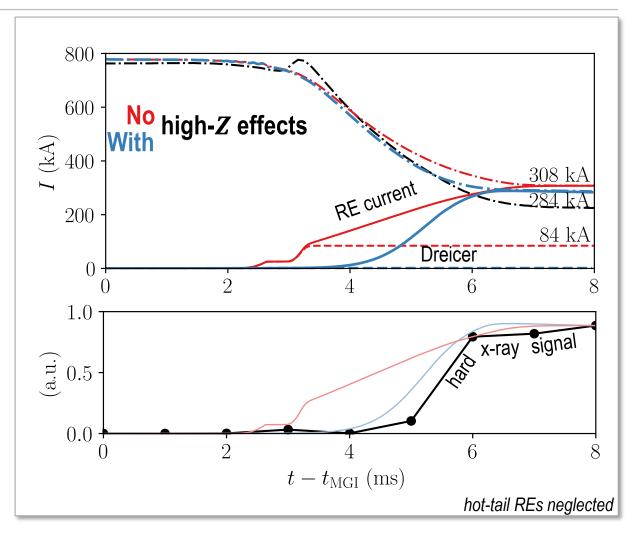
ASTRA-STRAHL simulations⁸

• Assess importance of partial screening in selfconsistent simulations:

state-of-the-art⁴⁻⁵ \leftrightarrow classical⁶⁻⁷

¹ Hesslow et al. Phys. Rev. Lett. 118, <u>255001</u> (2017)
 ² Hesslow et al. Plasma Phys. Control. Fusion 60, <u>074010</u> (2018)
 ³ Hesslow et al. J. Plasma Phys. 84, <u>905840605</u> (2018)

⁴ Hesslow et al. Nucl. Fusion **59**, <u>084004</u> (2019)
 ⁵ Hesslow et al. J. Plasma Phys. **85**, <u>475850601</u> (2019)
 ⁶ Connor et al. Nucl. Fusion **15**, <u>415</u> (1975)


^{*<u>7</u>} Rosenbluth <i>et al. Nucl. Fusion* **37**, <u>1355</u> (1997) ^{<u>8</u>} Linder *et al. Nucl. Fusion* **60**, <u>096031</u> (2020)</sup>

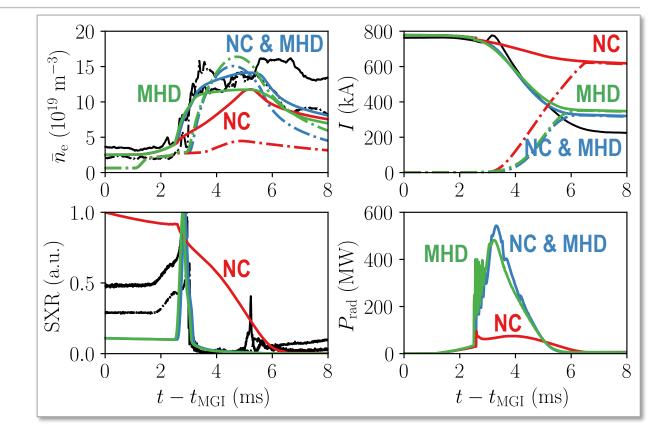
Runaway electron generation: model validation

Absence of high-Z effects

- Dreicer generation overestimated (earlier onset & stronger, 84 kA)
- Avalanche multiplication reduced (slower rise of RE current during CQ)
- Decay of total current slowed down
 → less Ohmic heating, less radiation
- Final $I_{\rm RE}$ similar, but different composition
- Hard x-ray signal: High $I_{\rm RE}$ only at end of CQ
- → Simulations consistent with experiment only when considering high-*Z* effects
- \rightarrow High-Z interactions important for runaway!

The role of impurity transport: impact of transport mechanisms

Mechanisms considered

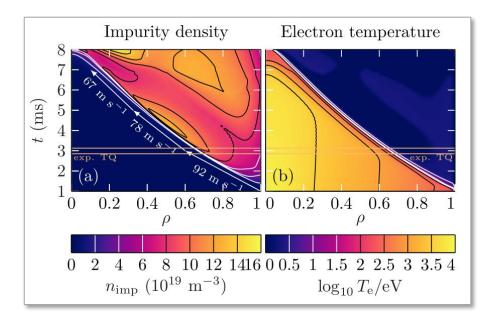

- Rapid redistribution (MHD effects due to breakup of magnetic surfaces)
- Neoclassical effects

Absence of rapid redistribution

- Impurity propagation driven by neutral gas
- Increase of electron density \bar{n}_{e} not matched
- \rightarrow Much slower TQ!

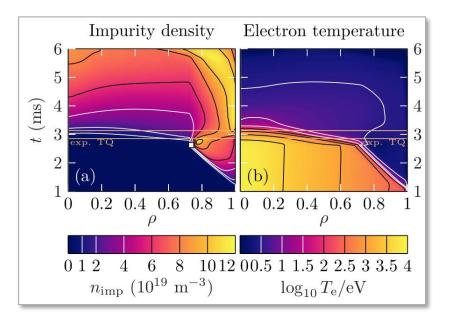
Absence of neoclassical effects

- Inward transport less effective
- → Rapid redistribution & neoclassical effects relevant for impurity transport



The role of impurity transport: rapid redistribution

Absence of rapid redistribution

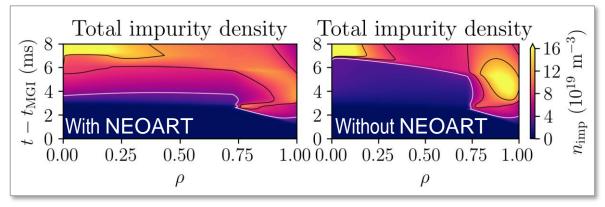

- Impurity propagation driven by neutral gas
- Slow TQ over several ms

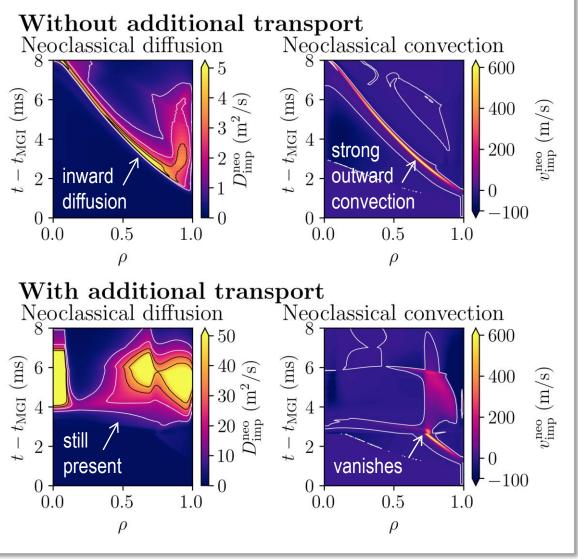
Considering rapid redistribution

- Central impurity density increases during CQ
- TQ on experimental sub-ms time scales
- Note, only order of magnitude values used: $D = 100 \text{ m}^2/\text{s}, \quad v = -1000 \text{ m/s},$ $\tau = 1.0 \text{ ms}$

(variation by around 50% describes experiment adequately)

The role of impurity transport: neoclassical transport

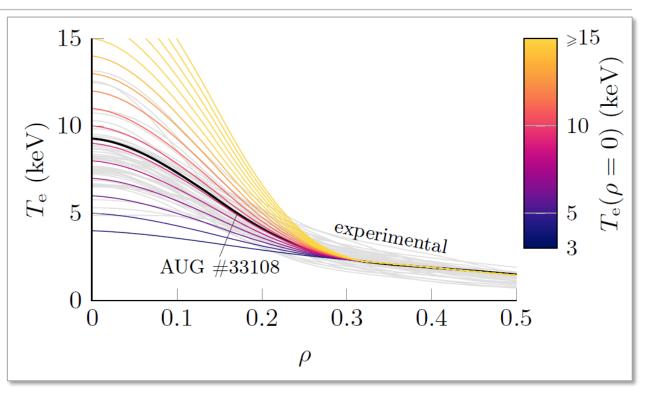

In absence of additional transport


- Diffusion & strong outward convection almost cancel
- Propagation driven by neutrals
- Slow inward propagation of material

With additional transport

- Outward convection vanishes; diffusion present
- Neoclassical transport contributes noticeably to inward transport
 (ourrent decay too slow in absonce of neoclassical off

(current decay too slow in absence of neoclassical effects)


Impact of pre-disruption temperature: simulation setup

Setup

- In AUG experiments, on-axis ECRH during last 0.1 ms prior to MGI
- Scale ECRH contribution of $T_e(\rho)$ in AUG #33108

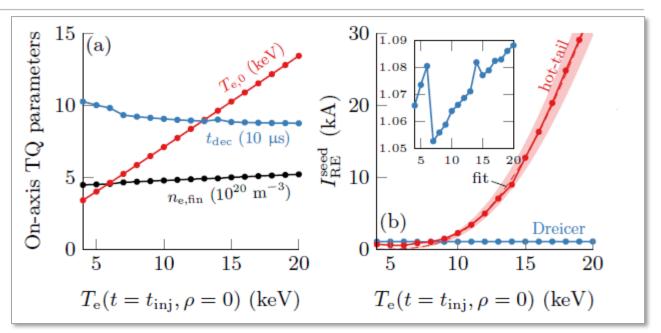
$$T_{\rm e}(\rho) = \frac{T_{\rm tar} - T_{\rm bg}(0)}{T_{\rm ECRH}(0)} T_{\rm ECRH}(\rho) + T_{\rm bg}(\rho)$$

target background

- Temperature unaffected for ho > 0.35

Impact of pre-disruption temperature: the RE seed

Dreicer population

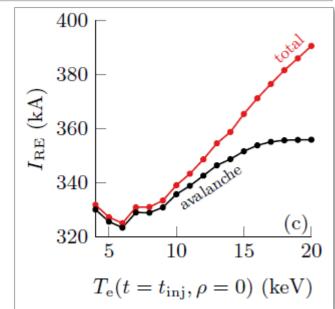

- Virtually unaffected: $I_{\rm D} = 1.1 \text{ kA}$
- No (significant) T_{e} change in region of strongest generation

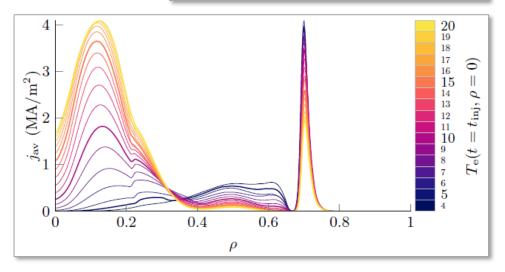
Hot-tail population

- Grows exponentially I_{hot} : 0.6 kA \rightarrow 33.7 kA
- Strongest increase above 10 keV
- Described by exponential

$$I_{\rm hot}^{\rm fit}(T_{\rm e,0}(\rho=0)) = (914 \pm 58) \exp\left(-4\left\{\frac{\tilde{\nu}\ln\Lambda(t_0)\,\langle n_{\rm e,fin}t_{\rm dec}\rangle}{T_{\rm e,0}(\rho=0)^{3/2}}\right\}^{2/3}\right) \,\,\mathrm{kA}$$

- Strong increase of temperature (by design), but density not at similar rate
- \rightarrow Strong increase of hot-tail runaway for hotter plasmas


Impact of pre-disruption temperature: avalanche & total current

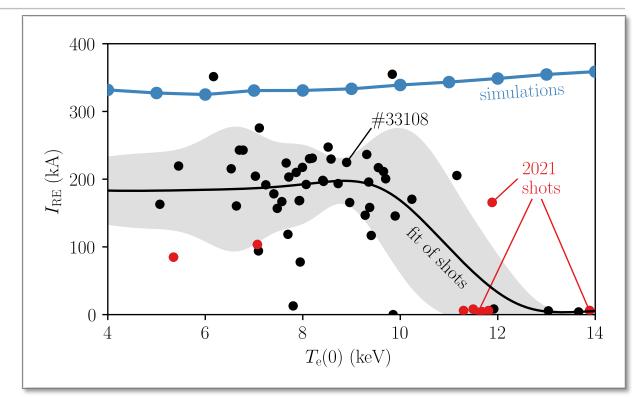

Multiplication

- Avalanche (& total) RE current ~ 330 kA for $T_{\rm e}$ < 9 keV
- Between 9 keV and 17 keV, I_{av} increases (additional multiplication between 2 3)
- Avalanche current saturates for $T_{\rm e} > 17~{\rm keV}$ at 356 kA
- Radial distribution of $j_{\rm av}$ changes (as hot-tail becomes more important): mid radius & $q=2 \rightarrow \rho \sim 0.12$

Total current

- For $T_{\rm e} > 9 \, {\rm keV}$, grows linearly due to hot-tail contribution
- At $T_{\rm e} = 20 \text{ keV}$, hot-tail constitutes 9% $I_{\rm RE}$
- → Relative importance of multiplication decreases due to finite poloidal magnetic flux available (less avalanching in ITER?)

Impact of pre-disruption temperature: experimental comparison



For $T_{\rm e} < 9 \; {\rm keV}$

- RE current ~ constant (experiment & simulation)
- Simulated I_{RE} larger due to absence of RE losses

For $T_{\rm e} > 9 \; {\rm keV}$

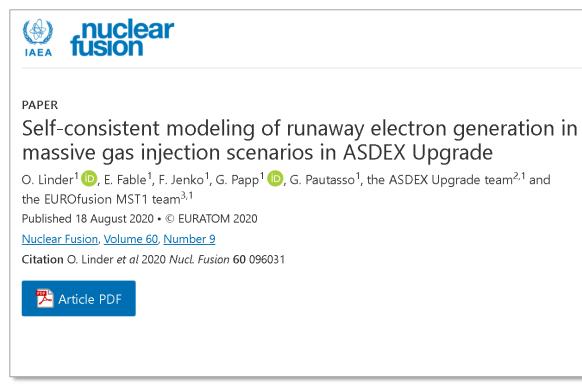
- In simulation, *I*_{RE} increasing (hot-tails)
- None in experiment at $T_e > 12 \ keV$
- In 2021 campaign, one discharge with RE beam close to 12 keV
- Reason: Loss of RE seed during breakup of magnetic surfaces?

Further reading

More details on self-consistent ASTRA-STRAHL simulations of Ar MGI in ASDEX Upgrade #33108 are presented in the following publications:

Physics

Abstract


Introduction

Model description

ASDEX Upgrade

evnerimente

runaway electron

Linder et al. Nucl. Fusion 60, 096031 (2020) https://doi.org/10.1088/1741-4326/ab9dcf

The formation of a substantial postdisruption runaway electron current in ASDEX Upgrade material injection experiments is determined by avalanche multiplication of a small seed population of runaway electrons. For the investigation of these scenarios, the runaway electron description of the coupled 1.5-D transport solvers ASTRA-STRAHL is amended by a fluid model describing electron runaway caused by the hot-tail mechanism. Applied in

Linder et al. J. Plasma Phys. 87, 905870301 (2021) https://doi.org/10.1017/S0022377821000416

Conclusions

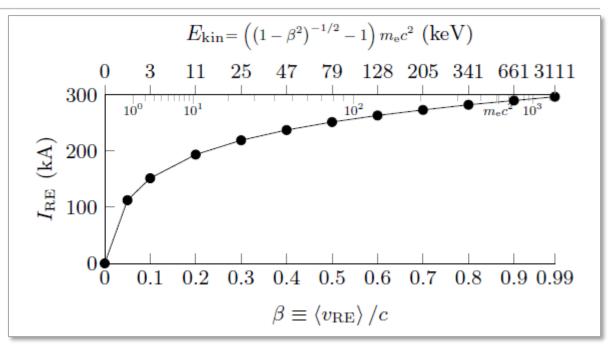
- 1. Successful ASTRA-STRAHL simulations of RE dynamics on ASDEX Upgrade (background plasma, MGI, RE generation)
- 2. High-*Z* effects important for RE generation
- 3. Impurity transport due to MHD & neoclassical effects
- 4. Discrepancies w.r.t. experiment in high T_{e} scenarios suggest seed RE loss

- CONNOR, J.W. and HASTIE, R.J.. Relativistic limitations on runaway electrons. *Nucl. Fusion* **15**, <u>415</u> (1975)
- DUX, R., PEETERS, A.G., GUDE, A. et al. Z dependence of the core impurity transport in ASDEX Upgrade H mode discharges. *Nucl. Fusion* **39**, <u>1509</u> (1999)
- FABLE, E., ANGIONI, C., IVANOV, A.A. et al. Dynamical coupling between magnetic equilibrium and transport in tokamak scenario modelling, with application to current ramps. *Plasma Phys. Control. Fusion* **55**, <u>074007</u> (2013)
- HESSLOW, L., EMBREUS, O., STAHL, A. et al. Effect of Partially Screened Nuclei on Fast-Electron Dynamics. *Phys. Rev. Lett.* **118**, <u>255001</u> (2017)
- HESSLOW, L., EMBREUS, O., WILKIE, G.J. et al. Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation. *Plasma Phys. Control. Fusion* **60**, <u>074010</u> (2018)
- HESSLOW, L., EMBREUS, O., HOPPE, M. et al. Generalized collision operator for fast electrons interacting with partially ionized impurities. *J. Plasma Phys.* **84**, <u>905840605</u> (2018)
- HESSLOW, L., EMBREUS, O., VALLHAGEN, O. et al. Influence of massive material injection on avalanche runaway generation during tokamak disruptions. *Nucl. Fusion* **59**, <u>084004</u> (2019)
- HESSLOW, L., UNNERFELT, L., VALLHAGEN, O. et al. Evaluation of the Dreicer runaway growth rate in the presence of high-*Z* impurities using a neural network. *J. Plasma Phys.* **85**, <u>475850601</u> (2019)

- LINDER, O., FABLE, E., JENKO, F. et al. Self-consistent modeling of runaway electron generation in massive gas injection scenarios in ASDEX Upgrade. *Nucl. Fusion* **60**, <u>096031</u> (2020)
- LINDER, O., PAPP, G., FABLE, E. et al. Electron runaway in ASDEX Upgrade experiments of varying core temperature. *J. Plasma Phys.* **87**, <u>905870301</u> (2021)
- PAUTASSO, G., FUCHS, C.J., GRUBER, O. et al. Plasma shut-down with fast impurity puff on ASDEX Upgrade. *Nucl. Fusion* **47**, <u>900</u> (2007)
- PAUTASSO, G., MLYNEK, A., BERNERT, M. et al. Assimilation of impurities during massive gas injection in ASDEX Upgrade. *Nucl. Fusion* **55**, <u>033015</u> (2015)
- PAUTASSO, G., BERNERT, M., DIBON, M. et al. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade. Plasma Phys. Control. Fusion **59**, 014046 (2017)
- PAUTASSO, G., DIBON, M., DUNNE, M. et al. Generation and dissipation of runaway electrons in ASDEX Upgrade experiments. *Nucl. Fusion* **60**, <u>086011</u> (2020)
- PEETERS, A.G. Reduced charge state equations that describe Pfirsch Schluter impurity transport in tokamak plasma. *Phys. Plasmas* **7**, <u>268</u> (1999)
- ROSENBLUTH, M.N. & PUTVINSKI, S.V. Theory for avalanche of runaway electrons in tokamaks. *Nucl. Fusion* **37**, <u>1355</u> (1997)
- SMITH, H.M. & VERWICHTE, E.. Hot tail runaway electron generation in tokamak disruptions. *Phys. Plasmas* **15**, <u>072502</u> (2008)

SUMMERS, H.P. The ADAS User Manual, version 2.6. <u>https://www.adas.ac.uk</u>.

Appendix: Average runaway electron velocity


Impact of assumption $\langle v_{RE} angle = c$

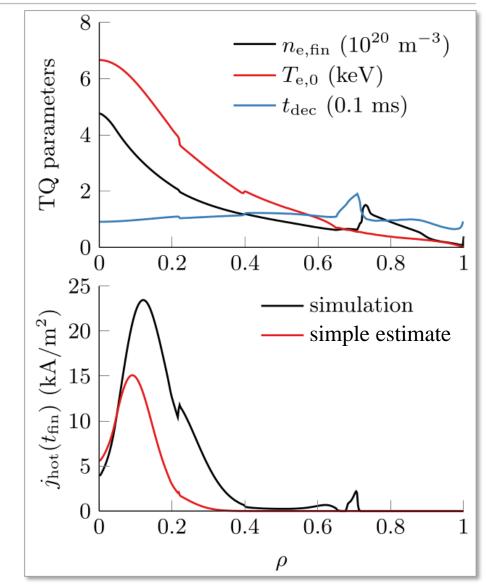
- Valid for $E_{kin} \ge 3.1 \text{ MeV}$ ($\le 1\%$ deviation)
- Conditions not fulfilled during early stages
- Yet, reduction of $\langle v_{RE} \rangle$ to below c \rightarrow slight decrease of I_{RE} (only assuming $E_{kin} \sim T_{e,0}$: strong decrease)
- Reduction of $\langle v_{RE} \rangle \equiv$ reduction of seed population! *(mathematically)*

 $\frac{\partial j_{\text{seed}}}{\partial t} = e \left\langle v_{\text{RE}} \right\rangle S_{\text{seed}} = e \left(c\beta \right) S_{\text{seed}} = ec \left(\beta S_{\text{seed}} \right)$

$$\frac{\partial j_{\rm av}}{\partial t} = e \left\langle v_{\rm RE} \right\rangle n_{\rm RE} \tilde{S}_{\rm av} = \left(j_{\rm av} + j_{\rm seed} \right) \tilde{S}_{\rm av}$$

→ Avalanche contribution not affected proportionally; total current only somewhat reduced (same argument as before!)

Appendix: Off-axis hot-tail density peaking


Important parameters for hot-tail generation¹

Simple estimate²

1

$$n_{\text{hot}}^{\text{simple}}(t_{\text{fin}}) \propto n_{\text{e},0} \exp\left(-4 \,\tilde{\nu} \frac{n_{\text{e},\text{fin}}^{2/3} t_{\text{dec}}^{2/3}}{T_{\text{e},0}}\right)$$

- Pre-disruption temperature $T_{e,0}$
- Decay time scale t_{dec}
- Post-disruption density $n_{e,fin}$
- → Off-axis hot-tail peaking due to on-axis density peaking post-TQ

