MHD Modeling of SPI in JET

Joseph McClenaghan

With

B.C. Lyons¹, C.C Kim², N. Eidietis¹, L.L Lao¹, R.M. Sweeney³ N. Hawkes⁴, G. Szepesi⁴

General Atomics, San Diego, California, USA
 SLS2 Consulting
 Massachusetts Institute of Technology
 Culham Centre for Fusion Energy

Presented at Theory and Simulation of Disruptions Workshop

July 20, 2021

Validation of shattered pellet injection disruption mitigation modeling is critical to accurately assess ITER predictions

- Unmitigated disruptions can cause significant damage to ITER
- Validation of disruption mitigation models develop the necessary confidence in their predictive capabilities of the ITER Disruption Mitigation System
- Benchmarking models is critical in improving the models
- Validation varying of major radius and stored energy

DOE International-Collaboration will validate M3D-C1 and NIMROD against recent JET and KSTAR experiments

Objectives

- Interpret recent mitigation experiments
 - JET, particular high thermal energy and radiation fraction/asymmetry
- Make predictions for additional experiments
- Equilibria reconstructed with kinetic profiles of high W_{th} scenario 1 for recent experiments

JET 95707 $I_p = 2.4 \text{ MA W}_{th} = 3.4 \text{ MJ}$, barrel B (Scenario 1 High W_{th})

Impurity Modified Single Fluid Nonlinear 3D MHD Resistive Equations

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \mathbf{V}) = \mathbf{S}_{\alpha} + \nabla \cdot D \nabla n_{\alpha}$$

- $-\alpha$ = ions(i) and impurities(Z) including neutral ions and impurities)
- S $_{\alpha}$ source and sink due to ionization and recombination from KRAD1
- electron(e) density from quasi-neutrality

$$\rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = \mathbf{J} \times \mathbf{B} - \nabla p$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \qquad \mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}$$

- η(T) temperature dependent Spitzer resistivity

¹D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137.

McClenaghan/TSDW/July 20

Impurity Modified Single Fluid Nonlinear 3D MHD Resistive Equations

NIMROD single temperature

$$\frac{n_t}{\Gamma - 1} \left(\frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T \right) = -p \nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q} + \mathbf{Q}$$

- T=T_i=T_e=T_z assumes instant thermalization
- heat flux **q** parameterized by temperature dependent χ_{II} and χ_{\perp}
- Q includes Ohmic heating and loss due to ionization, recombination and radiation

M3D-C1 two temperature model

$$n_e \left[\frac{\partial T_e}{\partial t} + \mathbf{v} \cdot \nabla T_e + \Gamma T_e \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(\eta J^2 - \nabla \cdot \mathbf{q}_e + Q_{ei} - \mathcal{P}_{rad} \right) - T_e \left(\frac{\partial n_e}{\partial t} + \mathbf{v} \cdot \nabla n_e \right)$$

$$n_{ti} \left[\frac{\partial T_i}{\partial t} + \mathbf{v} \cdot \nabla T_i + \Gamma T_i \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(-\nabla \cdot \mathbf{q}_i - Q_{ei} - \mathbf{\Pi} : \mathbf{v} \right) - T_i \left(\frac{\partial n_{ti}}{\partial t} + \mathbf{v} \cdot \nabla n_{ti} \right)$$

Particle SPI Model Easy to Adjust Size, Trajectory and Composition

- Single monolithic particle (ignore shatter)
- Pencil beam: plume is fixed length L pb → fixed delay between particles
 - uniform train of particles following single straight line trajectory
- Cloud-of-fragments may be important for multi-injector with finite time delay
 - distribution of fragment sizes and trajectories (fracture-threshold theory)
 - adds additional time and space

NIMROD 3D single pellet simulation shows typical SPI disruption

McClenaahan/TSDW/July 20

- Single monolithic pellet representation simulation
 - (v_p=200m/s, r_p=4mm, pureneon)
- Numerical viscosity of 1000 m²/s
- Typical characteristics of SPI disruption
 - Radiative decay of thermal energy
 - MHD event leads to radiation spike and rapid TQ

M3D-C1 Single-Pellet JET Modeling Shows Complete

- Single-pellet simulations done for 95707 at 50.5448 s (150 m/s, D=8.1 mm, pure-neon)
- Typical characteristics of SPI disruption
 - Radiative decay of thermal energy
 - MHD event(s) cause radiation spike and rapid TQ
 - Slight current spike before CQ

Particle SPI Model Easy to Adjust Size, Trajectory and Composition

- Single monolithic particle (ignore shatter)
- Pencil beam: plume is fixed length L pb \rightarrow fixed delay between particles
 - uniform train of particles following single straight line trajectory
- Cloud-of-fragments may be important for multi-injector with finite time delay
 - distribution of fragment sizes and trajectories (fracture-threshold theory)
 - adds additional time and space

Switching to 10cm pellet beam representation show similar thermal quench with reduced MHD activity

Scan in viscosity shows reducing viscosity increases MHD and a more rapid thermal quench

- 3 viscosities
 - 2000 m²/s (dashed)
 - 1000 m²/s (dashdot)
 - 500 m²/s (solid)

2D MHD simulation scanning deuterium content

- 0-67% Molar fraction Deuterium have similar predicted thermal quenches
- Behavior may not hold for 3D simulations which have quicker thermal quench.

Particle SPI Model Easy to Adjust Size, Trajectory and Composition

- Single monolithic particle (ignore shatter)
- Pencil beam: plume is fixed length L pb → fixed delay between particles
 - uniform train of particles following single straight line trajectory
- Cloud-of-fragments may be important for multi-injector with finite time delay
 - distribution of fragment sizes and trajectories (fracture-threshold theory)
 - adds additional time and space

Future cloud-of-fragments simulations underway for both NIMROD & M3D-C1

- Fracture threshold model for realistic pellets
- Pure Neon
 - 30 fragments
 - r_p=1.71 mm
 - v_p=150 m/s
- 95% D, 5% Ne
 - 85 fragments
 - r_p=1.21 mm
 - v_p=300 m/s

Conclusions

- NIMROD & M3D-C1 3D single pellet simulation shows typical SPI disruption
- More realistic pencil beam simulation had similar thermal quench with reduced MHD activity
- Scan in viscosity shows reducing viscosity increases MHD and a more rapid thermal quench
- Future work:
 - More realistic cloud of fragments modeling
 - assessment of radiation fraction and asymmetry as a function of pellet neon content and thermal-energy fraction

