Access and Extrapolation of Runaway Electron Mitigation via D2 Injection and Large MHD

C. Paz-Soldan^{1,2}, Y. Liu², K. Aleynikova³,

P. Aleynikov³, N. Eidietis², E. Hollmann⁴,

C. Reux⁵, the DIII-D team and JET contributors**

 ^{2}GA ³IPP-Greifswald ¹ Columbia University ⁵CEA-France 4UCSD

**See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

Work supported by the US DOE under DE-FC02- 04ER54698, DE-SC0020299 and carried out within the framework of the EUROfusion Consortium, receiving funding from the Euratom research and training pro-gramme 2014-2018 and 2019-2020 under grant agreement No 633053.

Presented at:

PPPL TSDW (Remote)

July 19th 2021

Motivation: High RE Energy, Yet Low Wall Flux / Heating

C. Reux et al, PRL 2021 C. Paz-Soldan et al, NF 2021 (in review)

Contrasting Conventional and New Approaches Highlights Key Differences

Conventional Approach:

- Collisional dissipation reduces RE current
- Loss occurs in more MHD stable situation (less δB)
- Localized & repetitive impacts (persistent HXR)

"D2 + MHD" Approach:

- Recombined plasma facilitates low q_a access
- Access bigger & faster MHD instabilities (kink?)
- Singular dispersed loss event for all REs

¹C. Reux et al, Phys. Rev. Lett 2021

²C. Paz-Soldan et al, Plas. Phys. Contrl. Fus 2019
³E. Hollmann et al, Phys. Plasma 2020

Synchrotron Emission Confirms Full RE Termination on Sub-Millisecond Timescales

- After D₂ injection: REs can persist very long time
 - Up to 5 seconds in DIII-D
- After crossing MHD instability boundary REs vanish in < 1 ms

Courtesy S. Silburn & Z. Papovic

Outline

- Experimental Conditions to Access the Benign Termination
 - Database of Multi-Machine Findings
 - New DIII-D Experimental Results (2021 Session)
- Extrapolating the Scenario to ITER Conditions
 - Equilibrium Evolution during VDE
 - MHD Modeling of Wetted Area
 - Avalanche Gain Considerations
- Conclusions & Open Questions

Outline

- Experimental Conditions to Access the Benign Termination
 - Database of Multi-Machine Findings
 - New DIII-D Experimental Results (2021 Session)
- Extrapolating the Scenario to ITER Conditions
 - Equilibrium Evolution during VDE
 - MHD Modeling of Wetted Area
 - Avalanche Gain Considerations
- Conclusions & Open Questions

Parameters of A-Priori Interest to Access the Benign Termination

- Safety factor (q), and parameters that set the safety factor: $q_a \sim \frac{a B_T}{I_P}$
- Background plasma species
- Vertical instability

Let's explore with a database and dedicated scans

D₂ Injection: 1) Facilitates Low Safety Factor Access

- D₂ cases tend to evolve to lower safety factor (more unstable)
 - ... not guaranteed
 - ... nor essential
- DIII-D $\delta B/B$ ingredients:
 - High Ip and low qa
 - Recombined state

D₂ Injection: 1) Facilitates Low Safety Factor Access

- D₂ cases tend to evolve to lower safety factor (more unstable)
 - ... not guaranteed
 - ... nor essential
- DIII-D $\delta B/B$ ingredients:
 - High Ip and low qa
 - Recombined state
- JET: more complex picture for δB/B
 - Greater variability in the current profile?

D₂ Injection: 1) Facilitates Low Safety Factor Access 2) Accelerates Ideal MHD Growth Rate

- Key D₂ correlation: bulk recombination
 - Decreases density, shortens Alfven time
 - Accelerates MHD growth rates

Controlled experiment of Z-effect at matched qa / IP ... Recombined (via D₂) beam unique in terms of dB/dt

- Recombined RE beam
 (D₂): large δB/B and dB/dt
 @ stability boundary
- Helium RE beam: does not exhibit large δB/B and has conventional final loss

Z-effect @ same IP/qa:

Controlled experiment of Z-effect at matched qa / IP ... Recombined (via D₂) beam unique in terms of dB/dt

- Recombined RE beam
 (D₂): large δB/B and dB/dt
 @ stability boundary
- Helium RE beam: does not exhibit large δB/B and has conventional final loss
- Regular (Ar only): does not exhibit large δB/B and has conventional final loss

Z-effect @ same IP/qa:

Controlled experiment of Z-effect at matched qa / IP ... Recombined (via D₂) beam unique in terms of dB/dt

- Recombined RE beam
 (D₂): large δB/B and dB/dt
 @ stability boundary
- Helium RE beam: does not exhibit large δB/B and has conventional final loss
- Regular (Ar only): does not exhibit large δB/B and has conventional final loss
- Non-RE plasma ref: still had large δB/B but a much slower dB/dt

D_2 Quantity Scan Reveals Limiting Phenomena Bracketing the Optimal Injection for Big $\delta B/B$

Limits of D2 Quantity:

- Just Right: Robustly recombined but robust to the minor kink instabilities
 - Strong $\delta B/B$ spike

D_2 Quantity Scan Reveals Limiting Phenomena Bracketing the Optimal Injection for Big $\delta B/B$

Limits of D2 Quantity:

- Just Right: Robustly recombined but robust to the minor kink instabilities
 - Strong $\delta B/B$ spike
- Too Little: plasma does not recombine, remains collisional
 - Weak $\delta B/B$ spike

D_2 Quantity Scan Reveals Limiting Phenomena Bracketing the Optimal Injection for Big $\delta B/B$

Limits of D2 Quantity:

- Just Right: Robustly recombined but robust to the minor kink instabilities
 - Strong $\delta B/B$ spike
- Too Little: plasma does not recombine, remains collisional
 - Weak $\delta B/B$ spike
- Too Much: Plasma reionizes after minor MHD events at higher q_a
 - Weak δB/B spike

1-D Diffusion Model¹ Predicts Optimum D₂ Quantity for Recombination in DIII-D

Depends on RE Current (Ohmic Heating), High-Z Quantity (Radiation)
[1] Hollmann et al, PoP 2020

Vertical Displacement Event: Deuterium Injection Facilitates access to Low Safety Factor (Final Loss Delayed – Why?)

DIII-D

High-Z (Ar / He)

- Final loss instabilities begin at higher safety factor
- Small δB/B

D2 Injection:

- Current channel contracts without driving final loss
- Accesses low safety factor big δB/B phenomenology
 - After the stability boundary is crossed

No Big Effect of Crossing q=2 Stability Boundary with Different IP Ramp Rates

- Past data features rising IP to lower qa
 - ITER will have flat or falling IP, but contracting radius
 - Motivates IP-dot Scan $q_a \sim \frac{aB_T}{I_P}$
- Large $\delta B/B$ at q=2 for variety of IP-dots
- IP-dot appears to have subdominant effect on MHD magnitude
- Experimentally could not access large negative IP-dot
 - (Plasma is not very resistive)

Falling BT Drives Off-axis Current and Allows Exploration of Current Profile Broadness Effect

- Current profile broadness invoked for why JET can find modes at higher qa
- Dropping BT in DIII-D showed benign kink termination at qa=3 (not 2!)
 - Similar to many JET examples
- Consistent with broader current profile facilitating instability
 - JET current profiles proposed to be broad or even hollow¹

¹O. Ficker, EPS 2021

Conclusions: Benign Termination w/ D2 Not Automatic. Following Access Conditions Appear Important:

- Species: Hydrogenic is unique! Not simply "low-Z"
 - Helium didn't work!
- Optimal D2 quantity to minimize free electron density
 - Too little: no recombination
 - Too much: too many electrons
 - Optimize injection quantity? Hollmann Model & MDC-23 effort
- VDE: D2 benefit seen in VDE trajectory
 - Why was lower qa access promoted? Not known.
- IP-dot: Appears unimportant
- BT-dot: Promotes broader J-profile and instability at higher qa
 - Supports J-profile as why JET phenomenology is more "diverse"

Outline

- Experimental Conditions to Access the Benign Termination
 - Database of Multi-Machine Findings
 - New DIII-D Experimental Results (2021 Session)
- Extrapolating the Scenario to ITER Conditions
 - Equilibrium Evolution during VDE
 - MHD Modeling of Wetted Area
 - Avalanche Gain Considerations
- Conclusions & Open Questions

Computed Post-Disruption Evolution for ITER Finds Low Safety Factor is Robustly Accessed

- Expect q=3 to be crossed near 10 MA
 - ~ 200 MJ Mag. Energy
 - ~ 5 MJ Kin. Energy
- Comparable evolutions found with or without D₂
 - Recombination not captured by model
- Lower RE current cases will have to compress further before access to q=3 or q=2

Low q should be expected (in principle!)

DINA ITER Simulations

K. Aleynikova et al, Plas. Phys. Rep. 2016

MHD Model + Orbit Following¹ w/ Observed $\delta B/B$ Levels Confirms Nearly all RE Orbits are Lost to the First Wall

- RE orbits followed in linear
 MHD eigenmode structure
 scaled to experimental δB/B
- δB/B at experimentally relevant values (~ 5%) causes most orbits to be lost to the first wall

ITER Simulations Underway for DINA Equilibria Shows Smaller than Expected RE Loss – Ongoing Work

- Equilibria near qa=2, 3 extracted from the VDE sequence
- Linear instability analysis reveals edge kink instability structure
 - qa=3 is more global
 - qa=2 edge localized (artifact?)
- Comparable $\delta B/B$ as in DIII-D/JET providing smaller RE loss fractions
 - Under investigation
- Extended MHD modeling needed to predict the δB/B expected
 - Non-linear saturation!

Large dB/B Maps to Large Wetted Area in Modeling

- Orbits connect to a wider fraction of the first-wall area
- RE kinetic energy disperses into a large surface area
 - Reduced peak heat flux
- Similar calculations repeated for ITER equilibria

¹Y.Q. Liu et al, NF 2019 & PoP 2020

RE Impact Wetted Area Must be High to Avoid Melting

- IR flash (DIII-D) and lack of IR heating (JET) provide boundaries on wetted area
 - > 1% and < 10% of first wall
- MARS-F simulations predict very large wetted areas
 - > 10% of first wall
- KORC simulations yielding similar (but smaller) values¹
- ITER requires greater than
 3% to avoid surface melt
 - >1% to avoid deep melting

¹M. Beidler & D. D.C.N (in progress)

RE Impact Wetted Area Must be High to Avoid Melting

- IR flash (DIII-D) and lack of IR heating (JET) provide boundaries on wetted area
 - > 1% and < 10% of first wall
- MARS-F simulations predict very large wetted areas
 - > 10% of first wall
- KORC simulations yielding similar (but smaller) values¹
- ITER requires greater than
 3% to avoid surface melt
 - >1% to avoid deep melting

¹M. Beidler & D. D.C.N (in progress)

RE Impact Wetted Area Must be High to Avoid Melting

- IR flash (DIII-D) and lack of IR heating (JET) provide boundaries on wetted area
 - > 1% and < 10% of first wall
- MARS-F simulations predict very large wetted areas
 - > 10% of first wall
- KORC simulations yielding similar (but smaller) values¹
- ITER requires greater than
 3% to avoid surface melt
 - >1% to avoid deep melting

¹M. Beidler & D. D.C.N (in progress)

Avalanche: High-Z Purge Improves Gain in DIII-D & JET

- D2 reduces Ar quantity through "purging" phenomenon
 - Less avalanche gain since fewer bound electron secondary targets
- DIII-D: about a factor of 10 improvement in the (small) gain factor
- Purge computed with Hollmann's model¹

¹Hollmann et al, PoP 2020

Courtesy P. Aleynikov

Avalanche: High-Z Purge Improves Gain in DIII-D & JET

- JET's D2 quantity fixed by the pellet geometry (3 sizes)
- Finer scan carried out in Ar quantity
- @ High Ar / high avalanche gain: "remnant" RE beam is re-born after near-total loss!
 - Suggests RE remnant not less than 1/10⁵ of initial at these conditions

ITER: Optimization space in H & Ne Requires Navigation to Promote Benign Termination (+ TQ/CQ Mitigation)

- ITER avalanche gain space qualitatively similar, but numbers way higher
 - If you exclude ex-vessel flux more like 10¹⁴ maximum

ITER: Optimization space in H & Ne Requires Navigation to Promote Benign Termination (+ TQ/CQ Mitigation)

- ITER avalanche gain space qualitatively similar, but numbers way higher
 - If you exclude ex-vessel flux more like 10¹⁴ maximum
- TQ/CQ Mitigation Sets Limits on Primary injection
 - Pure Ne shown
 - Ne + H₂ Mixture ??

ITER: Optimization space in H & Ne Requires Navigation to Promote Benign Termination (+ TQ/CQ Mitigation)

- ITER avalanche gain space qualitatively similar, but numbers way higher
 - If you exclude ex-vessel flux more like 10¹⁴ maximum
- TQ/CQ Mitigation Sets Limits on Primary injection
 - Pure Ne shown
 - Ne + H₂ Mixture ??
- SPI pellet size also fixed
 - Purge should bring it down
- Low Ne quantity could make gain more manageable

As Large Gain Likely Unavoidable, Deployment in ITER DMS Likely Will Involve Multiple Loss Events (& Pellets?)

- Candidate scheme foresees multiple, but benign, loss events
- Goal: keep recombination & promote large MHD
- Will multiple H₂ injections be required?

Validation Needed@ High RE Current / Gain... in ITER Pre-FPO Phase

Candidate ITER DMS Scheme

Conclusion: Extrapolation of Benign Termination to ITER

- Equilibrium Evolution: Likely access to low q during VDE
 - Unless "high-Z-like" termination scenario appears first
- Kinetic Energy handling: If large $\delta B/B$ accessed, expect large-scale dispersion / large wetted area
 - Will be accessed? See first half of presentation for insights.
 - Can ITER RE beam be recombined?
- Magnetic Energy handling: Large avalanche gain hard to avoid
 - Plausible scenario is repetitive events with H₂ injection in between

Open Questions: Still Many

- Purge Physics / Dynamics with (Ne + H2) vs (Ar + D2)
 - Making REs with Ne should be a priority experimentally
 - 1-D Diffusion Model should validate purge physics with this mixture
- Prediction of δB/B
 - Extended MHD is the way forward
- JET dataset and the role of integer safety factor / external kink
 - Not always clear sometimes double tearing mode? Why?
- VDE dynamics: VDE growth rate, Z-effect, more to understand
- Dynamics of Repetitive Benign Terminations?
 - Need ITER to do this without high-Z

Bonus Slides