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Detailed outline

I. Intro and Motivations [slides 2-5]
a) Disruptions as final loss of control (3), interpretable algorithms to aid 

in active monitoring of soft and hard limits (4-5)
II. Disruption Prediction via Random Forest (DPRF) [slides 6-18]

a) Previous results (6)
1. More details on RF methodology in backup slides (23-25)

b) DIII-D upgrades: DPRF2.0 (7-14)
1. Improved training set (7) and input features (8-9)
2. Off-normal detection closed-loop experiments (11-12)
3. Proximity control integration (13-14)

c) EAST implementation and closed-loop experiments (15-18)
III. Summary And Conclusions [slides 19-20]
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Plasma pushed close to operational limits often leads to 
instabilities onset or control faults: unintentional disruptions

View from visible camera of disruption on 
Alcator C-Mod. Courtesy R.A. Tinguely.

• Disruptions related to peak plasma performances: higher stored energy, 
longer confinement times…

• Consequences: melting/ablation of plasma facing components, 
thermal loads, mechanical stresses,…

• Real-time prediction and avoidance, with mitigation, mandatory when 
scaling to reactor sizes and forces.

JET runaway damage.
https://www.iter.org/newsline/-/2234
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possible disruptive chains of events

3

Statistical studies show complex chains of events: 
need timely identification of unstable events

De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET”

Disruptions as final loss of control: 
successful pre-disruptive event 

identification can inform plasma 
controller on proper actuators to use.

• Statistics of the sequence of 
events for ~10yrs of unintentional
disruptions at JET: width of the 
connecting arrows indicates the 
frequency of event occurrence;

• Similar studies are not always
available across different 
tokamaks.
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Active monitoring and prediction of soft/hard limits 
necessary to inform transition across ops boundaries

Interpretable data-driven models 
provide general proximity to 

unstable ops space.

• Proximity to stability boundaries needs to be actively controlled by the PCS, 
managing different actuators for different tasks.

• Disruption Free Protocol* @DIII-D qualify solutions for different control regimes.
*J. Barr et al 2021, 28th

IAEA FEC, EX/5-TH/6 

Adapted from 
Sammuli et al, FED 2021
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Interpretable ML models for disruption prediction useful 
resources to identify stability boundaries in real-time
• DIII-D and EAST: the Disruption Prediction via Random Forest algorithm 

(DPRF) applied to compute the probability of an impending disruption, 
while interpreting its drivers in real-time.

#175552
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DPRF supervised binary classification algorithm: 
identify transitions from non disruptive to disruptive phases

• Fixed time for transition from safe to disruptive operational space.
• Training set: thousands of discharges, agnostic to disruption type.
• Offline cross-machine investigation 0-D features (flattop data).
• DIII-D Real-time implementation in FY18-19.

+ 
non disr

C. Rea and R.S. Granetz, Fus. Science Tech. 74 (2018)
C. Rea et al., Plasma Phys. Control. Fusion 60 (2018)

C. Rea et al., Nucl. Fusion 59 (2019)
K. Montes, C. Rea et al., Nucl. Fusion 59 (2019)

DPRF is based on the 
Random Forest* 
ensemble algorithm 
→ collection of 
decision trees:

Provides metrics of 
interpretability.

normalized internal inductance

→ DPRF 2.0

*L. Breimann, Machine Learning 45, 5–32 (2001)
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Upgrades to DIII-D DPRF through improved training set 
and input features: DPRF 2.0
• Improved label classification by detecting transitions between specific 

operational boundaries on a shot-by-shot basis.

• Unstable events manually 
identified > 300 DIII-D 
discharges (Montes). 

• ML algorithms: training 
composition can affect the 
model sensitivity towards 
certain scenarios.

• Need (automated) 
identification of 
disruption causes.

Tags from De Vries et al. NF 51 (2011) 053018 
“Survey of disruption causes at JET”

Event type at transition time

co
un

t

A. Pau et al., Nucl. Fusion 59 (2019)
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DPRF 2.0: radial peaking factors added to other 0-D inputs 
to detect earlier instability onset 

• 1D/2D profile information compressed 
into peaking factors.

• Profile diagnostics mapped onto flux 
surfaces or core / divertor regions.

A. Pau et al., IEEE TPS, 46 (2018)
C. Rea, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter, 
“Progress Towards Interpretable Machine Learning-based                 

Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)

Peaking factors are interpretable, 
easy to calculate in real-time
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Te and ne remapped onto ρ to extract relative 
importance of the core vs full profile + Prad peakings

𝑇𝑇𝑒𝑒 peaking
𝑛𝑛𝑒𝑒 peaking
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 Core 
Peaking

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 Divertor 
Peaking

Lower bolometer fan 
used to isolate Prad

contribution in the 
core or the lower 
X-point region.

C. Rea, K.J. Montes, A. Pau, R.S. Granetz, O. Sauter, 
“Progress Towards Interpretable Machine Learning-based                 

Disruption Predictors Across Tokamaks”, Fus. Science Tech. (2020)

DIII-D Lower Bolometer FanDIII-D Thomson Scattering System
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DPRF 2.0: use feature contributions to identify disruptivity 
drivers in real-time and inform PCS

Access to disruptivity drivers in 
real-time enables monitoring of 

unstable plasma features
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DPRF 2.0 shows real-time feature contribution computation 
(~ 200 µs) and successful ONFR* integration

Closed the loop in the PCS by triggering 
early rapid shutdown, MGI, and ECH

C. Rea et al. IAEA FEC 2020

*Off-Normal Fault Response → Asynchronous and Emergency response. 
N. Eidietis et al., 2018 Nucl. Fusion 58 056023

• Fast shutdown triggered by 
preset disruptivity threshold.

• Alarm communicated to ONFR, 
in line with disruption-free 
protocol for asynchronous 
control and emergency 
response.

DIII-D 180805

ONFR
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DPRF 2.0 shows real-time feature contribution computation 
(~ 200 µs) and successful ONFR* integration

Assessed peaking factors as relevant 
metrics in ITER baseline scenario on DIII-D

C. Rea et al. IAEA FEC 2020

real-time peaking factors 

real-time contributions to disruptivity 

*Off-Normal Fault Response → Asynchronous and Emergency response. 
N. Eidietis et al., 2018 Nucl. Fusion 58 056023

• Flattop disruption with an 
impurity accumulation event: 
puffing Ar starting at ~ 2s.

• Peaking factors reflect changes 
in profiles due to impurity 
accumulation, leading to an 
increase in calculated disruptivity.

• Real-time feature contributions 
show stronger signature of such 
event.

DIII-D 180808
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New (FY20) in DIII-D PCS: Proximity Controller, glue code 
between stability models & actuators regulation

Adapted from J. Barr, 3DSP Group Mtg, 02/22/2021

o Generalized architecture block connecting 
multiple input stability models to actuators 
categories for active regulation:

o tunable PIDs/matrices 
mapping stability “errors” 
to target mods, relative to 
nearness to stability limit. 
Ex: (metric-ref)/(lim-ref)
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DPRF included in DIII-D proximity controller, being tested 
right now to regulate plasma stability and performance

∆κ = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 ∗ 𝑓𝑓κ,𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑑𝑑κ
𝑑𝑑𝑑𝑑

∆κ𝑐𝑐𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑐𝑐
∆𝑓𝑓κ,𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐

Disruptivity is a measure of 
proximity to an unstable 

operating space

Feature contributions can be 
mapped onto controllable plasma 

parameters to regulate stability

J. Barr, “Control Solutions Supporting Disruption Free 
Operation on DIII-D and EAST”, IAEA TM PDM July 2020
C. Rea, APS-DPP 2020

DPRF

Prox Ctrl
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DIII-D and EAST PCS similarities enable portability of DPRF 
as general disruption alarm

EAST

𝑛𝑛/𝑛𝑛𝐺𝐺

𝑉𝑉𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙

(𝑃𝑃𝑙𝑙 − 𝑃𝑃𝑙𝑙𝑟𝑟𝑐𝑐𝑑𝑑)/𝑃𝑃𝑙𝑙𝑟𝑟𝑐𝑐𝑑𝑑

ℓ𝑐𝑐

𝑞𝑞95
𝑊𝑊𝑚𝑚𝑚𝑟𝑟

(𝑧𝑧𝑐𝑐𝑐𝑐𝑟𝑟 − 𝑧𝑧𝑙𝑙𝑟𝑟𝑐𝑐𝑑𝑑)/𝑎𝑎

𝛽𝛽n

𝜅𝜅

• DPRF version ported in EAST PCS during 2019-2020, gathered stats on 
performances during 2020 campaign.

• Few dedicated discharges to test 
DPRF as MGI trigger.
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DPRF installed in EAST PCS: feature contributions and 
disruptivity calculated in real-time in ~ 200 µs

• DPRF trained using
~400 high density (ne/nG > 
0.8) disruptions and ~400 
non-disruptive data.

• Tested in real-time on 
shots with similar 
conditions.

• Tested in closed-loop to 
fire mitigation system.

C. Rea et al. IAEA FEC 2020
W. Hu, C. Rea et al., Nucl Fusion 2021 in review
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EAST DPRF: disruptivity threshold of 0.8 guarantees 
TP ~ 92% and FP ~ 10% and avg warning time >1 s

C. Rea et al. IAEA FEC 2020
W. Hu, C. Rea et al., Nucl Fusion 2021 in review

• Performance plateau 40-50 
ms before the disruption, 
guaranteeing > 90% of 
correct classifications, while 
keeping the false alarm rate 
at values less than 10%.
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Future work, EAST DPRF upgrades:

• Shot-by-shot transition time to unstable operational 
space;

• Implementation of radiation profiles peaking factors,
also in real-time;

• DPRF tailored on impurity-driven (W) disruptions in 2021 
experiments;

• GA proximity controller ported to EAST will enable DPRF 
as stability model for continuous prevention. AXUV array fans on EAST
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InterpretabIe ML + control algorithms can be used to 
regulate the plasma away from stability limits

• DPRF provides explainable predictions – tested on C-Mod, EAST, DIII-D:
– Works as real-time scenario detector (DIII-D, EAST).

 Tested for asynchronous avoidance and emergency response.
– Now integrated with Proximity Controller for continuous

monitoring and stability regulation (DIII-D). 
 Ongoing real-time control tests.

 IAEA TM on Plasma Disruptions and their Mitigation material: https://conferences.iaea.org/event/217/overview

 Part of the data analysis was performed using the OMFIT integrated modelling framework. 

https://conferences.iaea.org/event/217/overview
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Future reactors must operate between passively stable 
and actively controlled prevention regimes

Event and plasma state 
predictors needed:
 Continuous monitoring;
 Exception handling;
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Integration with scenario development
and control optimization
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Additional/Backup slides

Useful references:

[Barr 2021] J. Barr et al 2021, 28th IAEA FEC, EX/5-TH/6 
[Montes 2021] K.J. Montes et al 2021 Nucl. Fusion 61 026022 
[Rea 2020] C. Rea et al 2020 Fusion Sci. Technol. 76 912–24
[Rea 2021] C. Rea et al 2021, 28th IAEA FEC, EX/P1-25
[Tinguely 2019] R A Tinguely et al 2019 Plasma Phys. Control. Fusion 61 095009
[Zhu 2021] J.X. Zhu et al 2021 Nucl. Fusion 61 026007
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Random Forests* are large collections of randomized and 
de-correlated decision trees, i.e. CART models 
• CART (Classification and Regression Trees) algorithms repeatedly partition 

the input space, to build trees whose end nodes are as pure as possible.
• 2D classification example: 2 features (x1, x2) and 2 classes (red, blue).

• The algorithm selects 
the best splitting 
value to partition the 
dataset, by 
minimizing an 
impurity measure:

E. Alpaydin, “Introduction to Machine Learning”, 
2nd edition, MIT Press

R2

R1

R3

• Tree learning via 
information gain
maximization.

-0.55

0.3

?

This set of rules, i.e. 
collection of decision 
paths, is used to classify a 
new, unseen (test) sample

R1

R3R2*L. Breimann, Machine Learning 45, 5–32 (2001)
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Decision paths in (DP)RF trees provide wealth of 
accessible information
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Example of first three layers in one trained RF tree:

• Wealth of information in each node, e.g. 
impurity measure, sample distributions in 
the two classes, …

• Predictions on new samples 
decomposed in contributions 
from individual features in 
decision path.
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Decision paths in (DP)RF trees provide local measures of 
explainability through information gain and loss
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𝐹𝐹 𝑥𝑥 =
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

bias𝑚𝑚 + �
𝑘𝑘=1

𝐾𝐾
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

contrib𝑚𝑚(𝑥𝑥, 𝑘𝑘)
Predictions for forest of M trees can be decomposed in 
the K contributions from each evaluated input feature:
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DPRF 2.0 – additional technical changes to the real-time 
implementation

• Decision tree collection translates into huge “if-then” PCS external 
function: slows down PCS compiling;

• Remapped DPRF trained structure to hdf5 file:
 Model data can be loaded in the PCS (even different data for 

different phases) at runtime;
 New general hdf5 interface developed – can be adapted for other 

data-driven algorithms. 
• Speeds up rebuilding/compiling time of the PCS and allows flexibility on 

retraining the algorithms between rundays/experiments.
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DPRF 2.0 – additional technical changes to the real-time 
implementation

• Decision trees collection translates into huge “if-then” PCS external 
function: slows down PCS compiling;

• Remapped DPRF trained structure to hdf5 file:
 Model data can be loaded in the PCS (even different data for 

different phases) at runtime;
 New general hdf5 interface developed – can be adapted for other 

data-driven algorithms. 

Possibility to add different HDF5 files 
for different trained forests
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