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Runaway electrons during disruptions

• One of the most difficult consequences of tokamak disruptions

• Large uncertainties on RE generation on ITER

• Due to the avalanche amplification factor [Rosenbluth NF 1997], [Vallhagen JPP 

2020]

• Some primary mechanisms still subject to uncertainties: tritium seed, 

Compton scattering, etc.

• Currents of several MA at 10-20 MeV may be reached

•  Significant damage on PFCs if left unmitigated
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JET in-vessel inspections – multiple 
runaway impacts [V. Huber]

Runaway impact on 
Tore Supra
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The ITER disruption and RE mitigation scheme

• Based on Shattered Pellet Injection (SPI)

• 24 barrels in equatorial ports + 3 barrels in upper ports

• First line of defense:

• TQ & CQ heat loads mitigation

• CQ EM load mitigation

• RE avoidance

 Which gas mixture and quantities should be used? 

 Are all goals attainable simultaneously?

• Second line of defense:

• In-flight RE beam energy dissipation

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[M. Lehnen, IAEA FEC 2018]
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The JET SPI system

• Installed in 2018-2019 through an 

international Eurofusion-US DOE-ITER-JET 

Operator collaboration [Baylor NF 2019]

• 3 barrels: 12.5, 8, 4 mm pellet diameters

• 1021-1023 atoms per pellet (10-600 Pa.m3)

• Pellet composition:

• D2, Ne, Ar, D2+Ne, D2+Ar mixtures

• Mechanical punch for Argon pellets

• Pellet speed: 100-500 m/s, depending on 

size, species

• Flight time 20-50 ms

• Independent firing of all barrels (+/- 0.2 ms)
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Shard plume

4



Outline

• Introduction

• Mitigating a RE beam

• High-Z SPI 

• D2 SPI 

• The “D2 effect” : development of the MHD instability

• Pre-collapse conditions

• Mode characterization

• The “D2 effect” : runaway regeneration during collapse

• The final collapse: analysis and modelling

• Energy conversion

• The “D2 effect” in VDE cases

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 5



Outline

• Introduction

• Mitigating a RE beam

• High-Z SPI 

• D2 SPI 

• The “D2 effect” : development of the MHD instability

• Pre-collapse conditions

• Mode characterization

• The “D2 effect” : runaway regeneration during collapse

• The final collapse: analysis and modelling

• Energy conversion

• The “D2 effect” in VDE cases

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 6



Previous results on runaway mitigation at JET

• Typical runaway scenario: 

• argon injection from a disruption 

mitigation valve (6 Pa.m3)

• Limiter plasma

• High Z massive gas injection 

accelerates the RE current decay

• Free electron density increases

• HXR/neutrons increase  enhanced 

collisions/dissipation

• Destabilizes the beam vertically

• Only works when the companion 

plasma electron density is low

• Higher density companion plasma: 

no effect due to penetration shielding 

and density saturation

High-Z MGI accelerates beam current decay, up 
to a certain companion plasma electron density
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[Reux APS 2017]
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Runaway suppression: high Z injections

• Mitigation experiments: fire a Shattered Pellet in the middle of a runaway beam

• Target: ~ 600 kA runaway beam, low density companion plasma (ne,l ~ 2x1019

m-2)

• Tested: 

• SPI 245 Pa.m3, argon

• SPI 70 Pa.m3, argon

• SPI 422 Pa.m3, neon

• SPI 121 Pa.m3, neon

• In all cases: 

• Beam successfully shortened (500 

ms instead of 1 s)

• Linear ramp-down rate 4.8-9 MA/s 

(larger with bigger pellets)

• Increase of HXR & neutron rate 

• Vertical destabilization

• Final impact with PFC heating
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SPI trigger

Ar SPI 245 Pa.m3

No SPI Ar, SPI 70 Pa.m3

Ne SPI 422 Pa.m3

Ne, SPI 121 Pa.m3

High-Z SPI accelerates the RE current 
decay but does not prevent impacts
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Runaway suppression : SPI vs. MGI

• On the same target runaway beam: compare MGI and SPI in similar conditions.

• SPI 12.5 mm (200 Pa.m3), argon: 

• Beam successfully shortened. 

(~500 ms instead of 1.0 s). 

• Linear ramp-down rate 6.3 MA/s

• MGI 280 Pa.m3, argon:

• Beam successfully shortened

• Linear ramp-down rate ~ 5.2 MA/s.

• In both cases: increase of 

neutron rate & HXR, vertical 

destabilization, heat loads on 

PFCs
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SPI trigger

Ar MGI 280 Pa.m3

Ar SPI 12.5 mm (200 Pa.m3)

HXR
No large difference between MGI 
and SPI in beams with low-density 

companion plasmas
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Runaway beam suppression :D2 SPI

• Current increases shortly after SPI

• Similar observations on DIII-D [Paz-

Soldan PPCF 2019], Compass [Mlynar PPCF 

2019], AUG [Pautasso NF 2020], FTU

• Neutrons and HXR drop

• Electron density drops to <1018 m-2

• Plasma recombination

• Vloop decreases

• Argon flushed-out

• VUV dominated by D lines [Sridhar PhD]

• Prad increases

• Runaways disappear in a few ms

• Synchrotron emission stops

• Large neutron/HXR spike

• Huge MHD burst

• No visible localized damage

• Current decay similar to an ohmic CQ

SPI trigger

#95135
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Modelling the effect of D2 SPI on the companion 
plasma

• Modelling the D2 effect using a 1D diffusion model [Hollmann NF 2019]

• Computes densities and temperatures with radiated power as an input

• Decrease of temperature is confirmed by the model, but not down to 

recombination

• The measured density (recombination) can only be matched if 99% of 

the radiated power comes from non-thermal sources (i.e. runaways)

• Ongoing effort to understand the power balance of the purged 

beam/plasma system: ECE radiation, synchrotron losses…

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[S. Sridhar PhD thesis 2020]
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Runaway beam suppression: heat loads

• Complete and fast (~1ms) dissipation of the runaway beam

• But no visible heat loads

• Heat loads of D2-mitigated runaway beams below the measurement 

threshold of the IR camera (0.5 MJ.m-2 vs up 10 MJ.m-2 for high-Z or 

non-mitigated)

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

IR camera (3-3.5 µm)
- synchrotron emission

Two mechanisms at play:

• Large MHD instability

• Absence of RE regeneration
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Triggering the instability

• Current rises up to low q, but not 

necessarily q=2 as in previous studies 

[Paz-Soldan PPCF 2019]

• Benign terminations associated with 

qedge between 2 and 5.

• Bad terminations happen at any qedge.

• Large MHD burst probably not always 

a current-limit instability

• The normalized growth rate of the 

instability dBpol/dt is better correlated 

to the impurity content or the impact 

severity compared to the magnitude of 

the instability δBpol/Bpol
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A fast, rather low-q MHD instability is 
correlated with benign terminations.
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Hollow current profile

• Current profile before the final collapse: evidence of a hollow 

profile from SOFT simulations

• Reconstructions of the measured IR synchrotron emission

• Best match between the measurement and the simulations:

• Pitch angle between 0.1 and 0.3

• RE energy < 15 MeV

• Hollow current profile

Hollow profile: key ingredient to 
benign terminations? C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 15
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Characterization of the instability

• Magnetic islands are visible in synchrotron pictures before the collapse

m=6 m=5 m=4 (briefly)

• Two m=5 patterns visible, one moving 

inwards

• m=4 pattern at 0.35 normalized radius 

 very likely to be the inner m=4 island

• n=1 most probable mode from Mirnov

analysis

Raw Mirnov signals

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

n=1
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Tracked 
frequency

R² fit quality

Signal 
colormap



Jorek MHD simulations

• Using the q-profile determined above, MHD simulations of the final 

instability were made with Jorek.

• Instability governed by a double tearing mode on both q=4 surfaces

• Destruction of the entire confinement in ~100 µs 

• Compatible with the experimental timescale (10-20 µs)

• 95% of REs lost to the wall through stochastization.

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[V. Bandaru et al., 
PPCF 63 035024, 

2021]

nRE

measured

Jorek simulations confirm
RE losses and the 

timescale of the collapse
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Mitigation using D2: Wmag to Wkin conversion

• Following the instability, current 

carried by dissipated runaways is 

converted back to ohmic.

• But in some conditions: REs are 

regenerated

• The features of the subsequent CQ 

depend on the companion plasma 

impurity content

• 3 situations:

• Complete dissipation and no 

regeneration

• Regeneration of a small beam

• Incomplete dissipation and 

continuous regeneration of a 

runaway beam

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

The D2 effect only works 
with a clean enough 
companion plasma
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Mitigation using D2: Wmag to Wkin conversion

• Focus on the two imperfect dissipations:

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

Regeneration
Incomplete dissipation

/ continuous regeneration

• Experimental indications that the remaining 

argon is responsible: 

• Small regeneration: Correlation between the 

Ar/D2 fraction and the max Prad or dIp/dt

during the final collapse  Higher E//

• When incomplete dissipation occurs: no 

complete CQ  rollover in Prad and 𝜏CQ 
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Runaway regeneration model

• A model was developed to estimate the RE avalanche rate following 

the collapse

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

• The model solves the evolution of the 

plasma temperature, plasma, vessel, 

runaway currents and electric field

• The impurity concentration is determined 

by matching calculated/measured Prad

• Results: 

• dI/dt in good agreement with measures

• Argon « purge » ratios of a few 10s to 

300 needed.  mechanism confirmed
21



Conversion from magnetic to kinetic energy: how to 

reaccelerate runaways during the final collapse

• Calculation of the fraction of the initial runaway magnetic energy 

converted into kinetic energy

• Elaborated from the method proposed in [Loarte NF 2011]

• Conversion happens when HXR bursts are recorded while current 

decreases

RE magnetic
energy

RE kinetic
energy

Companion
plasma

Collisions

WallExternal
conducting
structures

Conversion










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Mitigation using D2: Wmag to Wkin conversion

• Fraction of magnetic energy converted (method in [Loarte NF 2011])

• 25% < fconv < 80% for high-Z

• Similar range as in [Loarte NF 2011]

• fconv <10% for low-Z

• Note: regeneration of small RE beams not taken into account : too small 

RE currents  probable reason for the gap between pure D2 and pure 

High-Z: non-continuous regeneration not here

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

[Loarte NF 2011]

The absence of conversion from 
Wmag to Wkin is a key ingredient 
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The D2 effect in Vertical Displacement Events

• Lack of vertical position control: potential limit of the scheme on ITER

• D2 effectiveness in a « scraping-off » beam? [Konovalov IAEA FEC 2016]

• Fire the SPI into a vertically moving plasma (VDE duration: 15 ms –

purge duration ~ 20 ms)

• Result: D2 still efficient if the pellet arrives at the plasma edge at the 

beginning of the fast displacement

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

The D2 effect still works if fired 
early into a VDEing RE beam

T°impact
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Close-up on termination

• The D2 pellet slows the VDE 

down.

• Several spikes on neutrons even

in the « early SPI » case benign

termination runaway

regeneration or effect of the 

movement?

• Density spike higher with early

efficient mitigation 

• Higher conversion from Wmag to 

ohmic and then radiation? 

• Higher assimilation in the full 

mitigation case? 

• Not shown here: density spike

even lower in the non-mitigated

case

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 26

Continuous transition between 
mitigated/unmitigated VDE REs



The D2 effect in Vertical Displacement Events

• Weak decreasing trend in Wmag to Wkin conversion as the SPI is fired

earlier and earlier

• But even at a distance of the VDE, some conversion is still there

(consistent with multiple spikes)

• 98185 not consistent with the trend, but also shows very low heat loads. 

(no camera on 98177)

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 27

Non-VDE database

Lower Wmag to Wkin conversion if 
the VDE is taken on time



Heat loads timing – unmitigated case

• Heating time span: 2 frames  ~ 10 ms.

• No significant energy deposition on plasma facing component touched by 

the beam while moving up  Only very weak scraping off

• Heating only starts when the plasma shrinks at the end of the collapse.

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 28

Reflected synchrotron 
emission

Heating

Heat loads linked to 
RE regeneration?

• Possibly linked to 
RE regeneration
only happening 
during collapse



Spatial footprint

• Very localized impact point for non-mitigated cases

• Gets broader for half-mitigated case and even broader for the fully-

mitigated case

• Side note: reflected synchrotron radiation is clearly visible

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 29
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Spatial footprint

• 2 Regions of interest:

• Main deposition area

• Rest of the dump plate rib

(away from the main point)
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Peak 
temperature

Distant 
temperature

[3.65 µm – 5.05 µm]



Heat load peaking

• More peaked heat loads for 

unmitigated cases

• More spread heat load

pattern for the half-mitigated

case

• Consequence of the slower

movement, with the plasma 

« rolling » on the upper

dump plate?

• « Mid-size » MHD instability?

• Small regeneration of 

runaways during the 

collapse?

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021 31

Better mitigation = more spread 
heat loads



Prospects for ITER

• The level of companion plasma purity needed to prevent RE 

reacceleration needs to be assessed

• Very likely to be high, as the avalanche is very strong on ITER

• The accessibility of the large MHD instability is also to be assessed

• More Jorek simulations planned

• Even if complete dissipation is unsuccessful, each intermediate 

collapse shaves off a fraction of the total current

•  Repetitive D2 SPI until the current reaches a safe level

C. Reux et al. Theory and Simulation of Disruptions Workshop 19/07/2021

RE beam

0 20 40 60

D2 SPI
D2 SPI

D2 SPI

15 MA

Time (arbitrary) [ms]
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Conclusions

• High-Z SPI not efficient at killing completely a RE beam (~ MGI)

• D2 SPI suppresses RE beams up to 1.4 MA without heat loads

• MHD instability in a hollow current profile leads to complete 

dissipation of runaways

• No regeneration of runaways occurs in the final collapse thanks to 

the absence of high-Z impurities

• Works in a vertically moving beam

• Very promising for ITER and beyond
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Perspectives

• Better understand the power balance in the purged

beam/companion system

• More studies on the current profile following the D2 pellet arrival

(island patterns)

• Better characterization of RE energy with HXR.

• More advanced modelling on the runaway behaviour after D2 arrival

(Jorek? DREAM?)
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Heat loads timing

• Camera pictures: when does heating start?

• Unmitigated case: only one frame (5 ms) before temperature max. 

• Half-mitigated case: 2 frames before the spike
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Unmitigated

Frame #-1 Frame #0: peak T°

Frame #-2 Frame #-1 Frame #0 – peak T°

Half-mitigated



Heat loads timing – half-mitigated case 

• Same situation with the 

half-mitigated case.

• No heating before the 

middle/end of the final 

collapse

•  Very limited scraping off 

again?

• Possibly linked to RE 

regeneration only

happening during collapse
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Reflected synchrotron emission
Heating phase

Heat loads linked to regeneration 
rather than initial RE impact?



Peaking factor for various cases

• Heat load pattern much 

more peaked for non-

mitigated cases.

• Much flatter for the half-

mitigated case.

• Spatial broadening by 

a « mid-size » MHD 

instability?

• Beam movement?
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