

Tokamak Disruption Event Characterization and Forecasting Research and Progress on Expansion to Real-Time Application

S.A. Sabbagh¹, J.W. Berkery¹, Y.S. Park¹, J.M. Bialek¹, J. Butt¹, Y. Jiang¹, V. Klevarova¹, J.D. Riquezes¹, J.G. Bak², M.D. Boyer³, K. Erickson³, A.H. Glasser⁴, C. Ham⁵, S.H. Hahn², J. Kim², A. Kirk⁵, J. Ko², W.H. Ko², L. Kogan⁵, J.H. Lee², M. Podesta³, D. Ryan⁵, A. Thornton⁵, S.W. Yoon², Z.R. Wang³

¹Department of Applied Physics, Columbia University, New York, NY

²Korea Institute of Fusion Energy, Daejeon, Republic of Korea

³Princeton Plasma Physics Laboratory, Princeton, NJ

⁴Fusion Theory and Computation, Inc., Kingston, WA

⁵Culham Centre for Fusion Energy, UKAEA, Abingdon, UK

2021 IAEA-PPPL Workshop: Theory/Sim of Disruptions 23 July 2021

Virtual Meeting

Disruption prediction and avoidance research progressing for ITER and future tokamaks – expanding to real-time

- Motivation: Disruption prediction/avoidance is a critical need
 - Why? A disruption stops plasma operation, might cause device damage
 - A highest priority DOE FES (Tier 1) initiative present "grand challenge" in tokamak stability research:
 - <u>Can be done!</u> (JET: < 4% disruptions with carbon wall)
 - <u>ITER disruption allowance</u>: < 1 2% (energy + E&M loads); << 1% (runaways)

Outline

- Disruption Event Characterization and Forecasting (DECAF) analysis
 - Disruption event chains, early forecasting, brief results, continued development
- Recent focus on real-time DECAF design and implementation on KSTAR
- Expanded physics analysis supporting DECAF
 - e.g. KSTAR high β_N , Δ ' analysis, high to ~100% non-inductive CD transport analysis

DECAF is a physics-based approach to disruption event understanding / forecasting to enable disruption avoidance

- Physical event modules encapsulate disruption chain events
 - Continued development focuses on improving these modules
 - Structure eases parallel development incl. real-time
- KEY: Offline and real-time analysis INTEGRATED
 - The SAME researchers that oversee the offline code/analysis are responsible for real-time code specifications

DECAF is structured to ease parallel development of disruption characterization, event criteria, and forecasting

DECAF provides an early disruption forecast - on <u>transport</u> <u>timescales</u> – giving potential for disruption avoidance

Important: Early warning occurs in apparently SAFE region of operating space!

DECAF MHD events also produce early disruption warnings for KSTAR; aim to compute in real-time

Continued development of DECAF builds from an extrapolable approach with strong initial success

- Fully automated, physics-based analysis of existing tokamak databases from multiple devices
- Analysis of all plasma states, continuous and asynchronous events, continuous "warning level" determination
 - "Safe": events indicating steady operation (e.g. determination of L-mode, H-mode, steady ELMing, etc.)
 - "Proximity": expected paths to "critical" events MHD LTM HLB DIS
 - "Critical": event chains leading to disruption if no action taken
- □ "Forecaster events" using models to provide the earliest possible indication of issues
- High success found to date, determined quantitatively
 - □ > 91% true positive, ~ 8% false positive rate (~1e4 shots, ~1e6 samples)
- □ Research continues focused on improving forecasting to needed accuracy (98%+ goal, w/low false positives),

Recent focus: implementation of real-time (r/t) diagnostic hardware at KSTAR enabling DECAF

- □ Implementation of real-time diagnostic capabilities
 - rtMHD system taking data; FPGA card real-time processing of FFTs with programming for all 16 channels channels completed (W. Que)
 - ✓ rtV₀ system installed, data taken in 2020, V₀(R) profile measured with
 temporary calibration; new system designed, to install 2021 (M. Podesta)
 - ★ rtECE system (T_e(R)) installed at KSTAR, accessible, on new Dolphin r/t
 network (10x bandwidth of present RFM network)
 - ★ rtECEI system (2D δT_e) installed at KSTAR, accessible, on new Dolphin network
 - \square rtMSE computer and interface in design (B pitch angle, δ B) (F. Levinton)
 - □ DOE "Reach: Milestone (for KSTAR 2021 run campaign)
 - □ <u>DEPARTE-2021-4R</u>: Utilize first real-time DECAF events to actuate the KSTAR shattered pellet injectors (SPI) for disruption mitigation
 - DECAF "LTM event forecaster" planned to be used for this demonstration

Overall setup for KSTAR real-time diagnostic integration and DECAF analysis for the PCS

Real-time toroidal velocity diagnostic (rtV_{\phi}) installation completed on KSTAR (Oct. 29th), first light the next day!

First Light! 32 channels

Initial real-time KSTAR V_b profile data taken 2020

M. Podesta, J. Yoo (PPPL), Y.S. Park (CU), WH. Ko (KFE)

Real-time V_{\phi} profile shows very good agreement with KSTAR CER system

- No Ne glow wavelength calibration performed
- Raw calibration based on passive spectra
- Refined through comparison with CER
- Overall, good agreement between the two systems
- Shown: RTV @1kHz vs CER @100Hz
 - Other shots show "blips" in rotation over ~1-5ms time-scale
- Tested for 16 channels at 1Khz
 - May have to reduce to 8 channels for final system

Status and plans for RTV system on KSTAR (Podestà)

KSTAR real-time ECE and ECEI data acquisition hardware installed earlier this year (2021)

- □ rtECE computer near heterodyne radiometer (76 channels)
- □ rtECEI computer connected to diagnostic by PCIe expansion box and custom interface in test cell (2D: 192 channels!)

12

The first real-time DECAF module in KSTAR PCS recently measured T_e profile (1st time last week)

Calibrated system, agrees with offline data acquisition

First real-time ECE data $(T_e(R))$ (red: real-time; black: off-line)

13

rtECEI DAQ system installed in the KSTAR test cell

Buffer chassis (192 channels)

PCIe expansion chassis _ rtECEI

- rtECEI computer located in the ECE rack (diagnostics room)
- LEMO cables installed for buffer chassis hook-up
- Dolphin cable run from ECEI DAQ in test cell to rtECEI computer

In ECEI DAQ room (test cell) In ECEI DAQ room (test cell)

The first real-time ECEI data on KSTAR was recently taken as well (1st time last week)

New DECAF edge localized mode event created to start examining correlations to other MHD

- DECAF ELM event
 - Presently determines
 ELM triggering times,
 along with frequency and relative amplitude
- Algorithm compatible with real-time use
- Distinguishes true
 "ELMs" from other events (global MHD, etc.) that generate D_α light
 - Magenta dashed lines at t = 0.6s is a global mode

T_e profile provides critical addition to D_{α} ELM detection by determining radial extent of perturbation – useful for real-time

Real-time MHD system taking data on KSTAR to be used for real-time DECAF application in 2021

- Real-time MHD analysis computer installed at KFE
 - Part of plasma control system
 - System FGPA chip now computing FFTs in real-time

Offline Magnetic probe spectrogram analysis

DECAF analysis of real-time signals

Simple island rotation dynamics model used to forecast the bifurcation point to signal disruption

- Cylindrical, rigid body model
- Possible model of drag for both a "slip" and a "no slip" condition:

$$\frac{d(I\Omega)}{dt} = T_{aux} - \frac{k_2\Omega}{1 + k_3\Omega^2} - \frac{(I\Omega)}{\tau_{2D}}$$

$$T_{mode} = \frac{k_2 \Omega}{1 + k_3 \Omega^2}$$

R. Fitzpatrick et al., Nucl. Fusion 33 (1993) 1049

- At very low angular speed, mode can reach a stable steady state,
 - → observed in KSTAR
- □ First real-time model, assume "no slip" condition

$$T_{mode} = \frac{k_1}{\Omega}$$

J. Riquezes (this meeting)

New locked mode (LTM) forecaster "measures" key parameters, provides early warning, high success

- □ Disruption forecasted when mode freq. < 0.5x computed inflection freq.
- 13 KSTAR shots from 2020 analysed, 100% success rate; 1.5s warning!

DECAF is fueled by coordinated research that continues to validate/develop physics models, e.g.:

Resistive MHD

- Detection / forecasting: available magnetic diagnostics, plasma rotation
- \square Forecasting: examination of MRE \rightarrow start with \triangle ' evaluation

Density limits

- Detection: rad. power, global empirical limit
- Forecasting: examination of rad. island power balance model

Global MHD

- Detection: available magnetic diagnostics, plasma rotation, equilibrium
- Forecasting: Kinetic MHD model has high success in NSTX, DIII-D
- Physics analysis / experiments to build DECAF models
 - Interpretive and "predict-first" TRANSP analysis of KSTAR long-pulse, high beta plasmas with high non-inductive fraction

Tearing mode classical ∆' stability examined in KSTAR plasmas (supports future DECAF models)

- □ Classical tearing stability index, Δ' , computed at q = 2 surface using outer layer solutions
- \Box At higher q_{95} , Δ' is mostly positive predicting unstable classical tearing mode
 - Indicates neoclassical effects, additional physics needed to reproduce XP
 - KEY POINT: Conclusions regarding Δ ' evolution can be made!
 - Recent paper with MRE evaluation → Y.S. Park, et al., NF 60 (2020) 056007

Tearing mode classical Δ ' and ideal stability sensitivity to models also studied in KSTAR

Predictive TRANSP analysis shows KSTAR design target β_N ~5 can be approached with f_{NI} ~100%

"Predict-first" analysis used to design high-β, 100% non-inductive current fraction (NICF) experiments for present KSTAR run campaign

- □ Up to 75% NICF already reached in similar plasmas
- □ By altering I_P and B_T values, $\beta_N > 4$, up to KSTAR design target 5 can be achieved with 100% NICF

DECAF application and research for disruption prediction and avoidance expanding to real-time

- Multi-faceted, integrated approach to disruption prediction and avoidance with several key characteristics
 - Physics-based approach yields key <u>understanding</u> of evolution toward disruptions: confident extrapolation of forecasting, avoidance by control
 - Full multi-machine databases used (full databases needed!)
 - Open to all methods of data analysis (physics, machine learning, etc.)
 See A. Piccione poster (this meeting)
- DECAF analysis produces early warning disruption forecasts
 - Sufficiently early for potential disruption avoidance by profile control
- □ Significant physics support efforts from multiple devices
 - KSTAR ∆' analysis, high to ~100% non-inductive CD transport analysis
- Implementing real-time DECAF analysis in KSTAR (4 out of 5 new real-time diagnostic data acquisition systems installed)

Supporting slides

A database of high-non-inductive fraction plasmas is important for disruption forecasting; NICF ~ 75% in KSTAR

- TRANSP analysis of experimental plasmas
- Non-inductive fraction
 - Beam-driven
 - Bootstrap
- Non-inductive fraction is key for stable high beta steady state operation

"Predict-first" KSTAR TRANSP analysis shows expected high performance plasmas at > 80% NICF

Predicted high non-inductive current fraction (NICF) current profiles

- □ High non-inductive current fraction predicted for 6.5, 7.5, 8.5 MW NBI
 - □ The β_N ranges from 3.0 3.5; based on KSTAR plasmas with NICF ~70%
- □ Aim to generate a significant database of long pulse, high NICF plasmas in 2021 KSTAR run for disruption prediction studies