Findings from a Benchmark Study of 3D Vertical Displacement with JOREK, M3D-C¹, and NIMROD

C. R. Sovinec,¹ F. J. Artola,^{2,3} S. C. Jardin,⁴ M. Hoelzl,³ I. Krebs,⁵ and C. Clauser^{4,6}

¹University of Wisconsin-Madison, ²ITER Organization, ³Max-Planck Institute for Plasma Physics, ⁴Princeton Plasma Physics Laboratory, ⁵Dutch Institute for Fundamental Energy Research, ⁶Lehigh University

Theory and Simulation of Disruptions Workshop

Virtual Meeting July 19-23, 2021

Center for Tokamak Transient Simulation

Theme, Outline, and Acknowledgments

Our benchmark study* for verifying simulations of asymmetric VDE shows strong qualitative agreement and highlights sensitivities that affect some quantitative measures.

- I. Motivation
- II. Problem setup
- III. Code comparison
- IV. Findings
 - A. General evolution
 - B. Wall forces
 - C. 3D Halo currents
 - D. Current asymmetry
 - E. Initial perturbation
 - F. Resolution checks
- V. Discussion and Conclusions

- Work supported by US DOE grant DE-SC0018001 and contract DE- AC02–09CH11466,
- > By the ITER Monaco Fellowship Program, and
- > By the EUROfusion Consortium.
 - Euratom research and training program 2014-2018 and 2019-2020 under grant agreement No 633053
 - ➢ Agreement No. WP19−20-ERG-DIFFER
 - The views and opinions expressed herein do not necessarily reflect those of the European Commission.

*F. J. Artola, et al., Physics of Plasmas 28, 052511 (2021).

Motivation: Verification benchmarking enhances confidence when applying large simulations codes.

- JOREK,[†] M3D-C^{1,‡} and NIMROD[°] are being applied to understand and predict effects from asymmetric VDE.
- The codes have each been verified for many applications, including symmetric VDE,* but not specifically for asymmetric VDE.
- Comprehensive analytical solutions are not tractable, so verification relies on establishing benchmark problems and performing comparisons.

⁺M. Hoelzl, et al., Nuclear Fusion 61, 065001 (2021).
[‡]N. M. Ferraro, et al., Physics of Plasmas 23, 056114 (2016).
[°]C. R. Sovinec, et al., J. Computational Physics 195, 355 (2004).
^{*}I. Krebs, et al., Physics of Plasmas 27, 022505 (2020).

Problem setup: Our computations are based on NSTX discharge 139536 at 309 ms.

- Case is representative of modeling an actual discharge.
- Feedback in the experiment was removed to allow vertical instability.
- Resistive wall shape is simplified.
- Fitted equilibrium is only used as an initial condition.

Heavy blue "Wall" line indicates the resistive wall used in the computations. [Figure from Artola, *et al.*, PoP **28**, 052511.]

The computations are run in two phases: 2D until LCFS contact, then 3D.

- The toroidally symmetric 2D computations are similar to those in Krebs, PoP **27**, 022505.
 - Transport coefficients are larger, making VDE displacement time closer to NSTX.
 - Linear stability to n > 0 is tested over displacement intervals of ¼.
- 3D computations are started from 2D results when the LCSF contacts the lower surface.
 - Thermal conductivities are increased by 150 to start a thermal quench (TQ).
 - Particle diffusivity is increased by 26.
 - Small asymmetric perturbations are applied.

Computed traces of magnetic axis position, plasma current, thermal energy, and net halo current. [From Artola, *et al.*, PoP **28**, 052511.]

Modeling is visco-resistive MHD with anisotropic thermal conduction.

- The anisotropic thermal conduction, $\kappa_{||} = 10^5 \kappa_{\perp}$, is with respect to the evolving 3D magnetic field.
- Resistivity depends on local, evolving temperature, $\eta(T) = \eta_0 (T_0/T)^{3/2}$.

$$\frac{\partial}{\partial t}n + \nabla \cdot (n\mathbf{V}) = \nabla \cdot (D\nabla n)$$

$$\rho\left(\frac{\partial}{\partial t}\mathbf{V} + \mathbf{V} \cdot \nabla \mathbf{V}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \mathbf{\Pi}$$

$$\frac{3}{2}n\left(\frac{\partial}{\partial t}T + \mathbf{V} \cdot \nabla T\right) = -\frac{p}{2}\nabla \cdot \mathbf{V} + \nabla \cdot \left[\left(\kappa_{||} - \kappa_{\perp}\right)\hat{\mathbf{b}}\hat{\mathbf{b}} + \kappa_{\perp}\mathbf{I}\right] \cdot \nabla T + Q - T\nabla \cdot (D\nabla n)$$

$$\frac{\partial}{\partial t}\mathbf{B} = \nabla \times (\mathbf{V} \times \mathbf{B} - \eta\mathbf{J})$$

Note:

- Loop voltage and Ohmic heating are not applied.
- Runaway electrons and radiation effects are not modeled.
- The JOREK modeling here uses reduced MHD, unlike M3D-C¹ and NIMROD.

Boundary conditions allow flow and magnetic field to decouple at the resistive wall.

- Dirichlet conditions on *n*, *T*, and **V** are applied at the resistive wall.
 - Fixing $T_w = 15 \ eV = 0.015 \ T_0$ maintains cold-wall conditions that allow field and flow to decouple.
 - Evolution is insensitive to V_w .*
- Resistive wall/vacuum magnetic models differ among the codes.
 - Thin wall (JOREK, NIMROD) vs. thick (M3D-C¹)
 - Boundary element vs. meshed vacuum

*Bunkers and Sovinec, PoP 27, 112505 (2020).

M3D-C¹ (left) and NIMROD (right) evolve vacuum-**B** over meshed external regions. [Krebs, *et al.*, PoP **27**, 022505] ITER ASDEX Upgrade

JOREK is coupled to the boundary-element STARWALL code that can represent complex 2D shapes. [Strumberger, *et al.*, PoP. **15**, 056110]

Code comparison: Models and numerical methods differ among the three codes.

	NIMROD	M3D-C1	JOREK
MHD model	full	full	reduced used here
Variables	п, Т, V , В	<i>n, T,</i> scalar potentials for V and A	<i>n, p</i> , scalar potentials for V and A
Poloidal representation	39k bicubic or biquadratic elements	reduced quintics, 17.5k nodes	22k Bézier cubics
Toroidal representation	Fourier, $N_{max} = 10, 21$	16 Hermite cubics	Fourier, $N_{max} = 10, 20$
Temporal advance	implicit leapfrog	split implicit	implicit
Resistive wall / vacuum field	thin wall, direct representation	thick wall, direct representation	thin wall, Green's function

• The unique aspects of each makes this benchmarking a substantial numerical test.

Findings: The three codes reproduce strong asymmetric destabilization from wall contact.

A slowly growing (m=2,n=1) is dominant until q_{95} passes 2, when other components become large. [Figures from Artola, *et al.*, PoP **28**, 052511.]

Poincaré plots (pressure contours) show similar effects on magnetic topology (thermal energy loss).

Halo asymmetry evolves with the MHD activity during the rapid quench.

• Energy in *n* = 3 magnetic fluctuation exceeds that in *n* = 1 briefly during the multihelicity saturation. [JOREK plots from Artola, *et al.*, PoP **28**, 052511.]

There are nontrivial quantitative discrepancies among some results.

	NIMROD	M3D-C1	JOREK
$max(W_{n=1})$	0.24 kJ	0.37 kJ	0.20 kJ
max(F _{horiz})	1.3 kN	2.7 kN	3.5 kN
Final TQ duration	0.18 ms	0.24 ms	0.14 ms

- Largest discrepancy (factor of 2.7) is in the net horizontal wall force.
- Peak n=1 magnetic energy in M3D-C¹ is largest.
- Other quantitative predictions are in better agreement.

Magnetic fluctuation energy (*n*=1), net vertical and horizontal wall force, and force orientation. [Artola, *et al.*, PoP **28**, 052511.]

Peaking of toroidal current depends on numerical wall coupling.

Toroidal current recorded over 10 equally spaced poloidal planes. [Artola, *et al.*, PoP **28**, 052511.]

- NIMROD and M3D-C¹ produce similar levels (2%) of toroidal current asymmetry.
- JOREK analysis shows no asymmetry.
 - The STARWALL coupling does not allow halo current to flow to the wall.
 - Surface currents effectively flow without leaving the JOREK mesh.

Schematic of JOREK halo-current continuity.

The asymmetric perturbations at the start of the 3D phase affect the long-term evolution.

- Perturbations excite unstable asymmetric modes.
- Amplitude and spatial distribution are usually arbitrary, and they differ among the codes.
- Differing magnitudes were tested in NIMROD and JOREK.
 - All perturbations are initially in a linear phase.
 - Net growth during vertical displacement matters in this configuration.
 - Increase in F_{horiz} with larger perturbation is 80%.

NIMROD results from computations with perturbations of smaller and larger amplitude. [Artola, *et al.*, PoP **28**, 052511.]

Different perturbation amplitudes lead to qualitatively different evolution.

- All 3D-phase computations first show weakly growing (2,1).
- With smaller perturbations, q₉₅ dropping below 2 leads to multi-helicity saturation and TQ.
- With larger perturbations, (2,1) and its harmonics saturate before other helicities are excited.
- Finding is verified with NIMROD and JOREK.

t = 1.05 ms *t* = 1.01 ms

Pressure contours from NIMROD and JOREK results with perturbations of smaller and larger amplitude. [Artola, *et al.*, PoP **28**, 052511.]

Numerical resolution tests have been performed.

- Doubling the number of toroidal harmonics in JOREK and NIMROD computations only makes small quantitative effects.
 - NIMROD computations in this comparison used 2D resistivity.
- A check of poloidal resolution was most easily accomplished by switching NIMROD's elements to biquadratic.
 - Peak *n* =1 magnetic energy is 37% larger.
 - max(F_{horiz}) is only 2.2% larger.

Key results from JOREK and NIMROD with varied toroidal resolution. [Artola, *et al.*, PoP **28**, 052511.]

Discussion and Conclusions

- There is strong qualitative agreement in the evolution predicted by JOREK, M3D-C¹, and NIMROD.
 - Evolution from vertical motion and wall contact directly influences 3D stability.
 - With sufficiently small 3D perturbations, all three codes show a slowly growing (2,1) followed by multi-helicity saturation.
 - The Ansatz-based reduced MHD in JOREK works well in this application.
- Non-trivial quantitative discrepancies are found.
 - Net horizontal force predictions vary by 2.7.
 - Resolution checks have not accounted for the discrepancies.
- The evolving stability of the profile and non-repetitive behavior makes the results sensitive to initial perturbations.
 - This is unlike many other applications of nonlinear computation in MFE.