

Complete prevention of runaway electron beam formation with a passive 3D coil in SPARC

RA Tinguely¹, VA Izzo², DT Garnier¹, A Sundström³, K Särkimäki⁴, O Embréus³, T Fülöp³, RS Granetz¹, M Greenwald¹, M Hoppe³, I Pusztai³, and R Sweeney¹

¹MIT PSFC ²Fiat Lux ³Chalmers ⁴IPP Garching

Submitted to PRL

Outline

- SPARC and its runaway electron problem
- Runaway Electron Mitigation Coil (REMC)
- 1. Model vacuum fields with COMSOL
- 2. Model 3D MHD with NIMROD
- 3. Evaluate transport with ASCOT5
- 4. Evolve runaways with DREAM
- Additional considerations and ongoing work

SPARC: high-field, compact, DT tokamak

full-field DT H-mode		
R_0	1.85 m	
а	0.57 m	
B_T	12.2 T	
I_P	8.7 MA	
q ₉₅	3.4	
κ_{95}	1.75	
$\langle n_e \rangle$	3 x 10 ²⁰ m ⁻³	
$\langle T_e \rangle$	7 keV	
f_G	0.37	
β_N	1.0	
P _{ICRF}	11.1 MW	
P _{fusion}	140 MW	
Q	11	

Creely JPP 2021

https://www.psfc.mit.edu/sparc

SPARC: great potential for runaway electron formation

SPARC: it's not all bad though...

full-fie	eld DT H-mode	
R_0	1.85 m	
a	0.57 m	fast transport time scales
\boldsymbol{B}_{T}	12.2 T	enhanced synchrotron radiation
I_P	8.7 MA	
q_{95}	3.4	
K 95	1.75 —	reduced E-field*
$\langle n_e angle$	3 x 10 ²⁰ m ⁻³	enhanced collisional friction
$\langle T_e \rangle$	7 keV	
f_G	0.37	
eta_N	1.0	
P _{ICRF}	11.1 MW	
P _{fusion}	140 MW	
Q	11	
	Creely JPP 2021	

*Fülöp JPP 2020

Yet GO+CODE indicates almost full current conversion 🛞

Sweeney JPP 2021

Solution: *Passive* 3D RE Mitigation Coil (REMC) to deconfine REs faster than they are generated

Boozer PPCF 2011, Smith PoP 2013

(vertical legs to avoid ports)

Sweeney JPP 2021

- Switch triggered by uniquely high disruption voltages
 - Probably Shockley diode/thyristor
 - (No disruption predictor required)
- Location outside the vessel for accessibility and radiation protection
- Closed circuit also under assessment
 - Close mechanical switch near I_P flat-top
 - Expect little effect from sawteeth
 - Investigating impact of ELMs, I_P ramp-up/down,...

Solution: *Passive* 3D RE Mitigation Coil (REMC) to deconfine REs faster than they are generated

Boozer PPCF 2011, Smith PoP 2013

Sweeney JPP 2021

Step 1: Model vacuum fields with COMSOL (D Garnier)

- Ellipse of constant current density
- Inside realistic tokamak structure
- Simulate midplane current quench
- CQ duration ~ 3.2 ms (fastest expected [Sweeney JPP 2020])
- → Magnetic and electric fields throughout simulation domain

COMSOL: http://www.comsol.com/products/multiphysics/

IAEA-PPPL TSDW 2021 (virtual) | 10

NIMROD: Sovinec JCP 2004

Step 2: Model MHD with NIMROD (V Izzo)

10

8

- Use realistic plasma profiles and equilibrium [Rodriguez-Fernandez JPP 2021]
- Only current quench MHD (artificial thermal quench)
- B-fields from COMSOL applied at NIMROD simulation boundary
- No *a priori* t-dependence, REMC B-fields evolve with I_P
- → Fast stochasticization, but core island reforms...

time = 1.20 ms

time = 0.70 ms

time = 1.70 ms

19 July 2021

10

r/a

0.5

Step 3: Evaluate transport with ASCOT5 (K Särkimäki)

5

4 -

3

2

1

0

0

Fime [ms]

Drift [m/s]

0.5

 $p = 10^{0.4}$, $p_{\parallel}/p = -0.99$

- Ensemble of markers followed in perturbed B-field at each time
- Range of momenta p/mc, pitches p₁₁/p, and minor radii r/a
- Calculate advection and diffusion coefficients [Särkimäki PPCF 2016]
- Islands not considered here (but will be later)
- \rightarrow Fast core penetration

19 July 2021

ASCOT5: Hirvijoki CPC 2014

Interlude: Introducing the code DREAM

- Evolution of electron population in
 - 1 real space dimension (r/a) and
 - + 2 velocity space dimensions (v_{\parallel}, v_{\perp})
- Computationally efficient by splitting population into thermal, hot, and relativistic (runaway) regimes
- Benchmarked with fluid code GO (ITER simulations shown)
- Validation is underway (e.g. JET [Brandström 2021 MSc Thesis])
- Generation mechanisms include
 - Hot-tail and Dreicer
 - Avalanche
 - Tritium beta-decay
 - Inverse Compton scattering
- Losses: bremsstrahlung, synchrotron radiation, transport

DREAM: Hoppe 2021 https://arxiv.org/abs/2103.16457

Step 4: Evolve runaways with DREAM (A Sundström)

- Use same plasma profiles and equilibrium as NIMROD
- Adjust TQ time (~0.27 ms) to best match current quench
- No *a priori* time dependence, advection, diffusion evolve with plasma current
- Dissipate same amount of magnetic energy as in COMSOL
- Use wall time of ~50 ms
- \rightarrow Transient peak of <50 kA

DREAM: Hoppe 2021 https://arxiv.org/abs/2103.16457

Additional considerations #1: Islands and other sensitivities

- 2-4 cm core islands simulated in DREAM
 - Transport coefficients set to 0 (conservatively)
 - Transient RE beams up to 2 MA can form, however...
 - Large E-fields will help REs escape the island [Guan PoP 2010]
 - Large current densities will be regulated by the kink instability ($q_0 < 1$, $\ell_i > 1.5$) [Cai and Fu NF 2015, Paz-Soldan PPCF 2019]
- The maximum runaway current is sensitive to...
 - Total magnetic energy available for dissipation
 - Timing and penetration "depth" of the transport
 - Thermal quench duration (although TQ transport needs dedicated modeling)
- But not as sensitive to...
 - Magnitude of transport coefficients
 - Inclusion of a resistive wall ($\tau_{\rm CQ} \ll \tau_{\rm wall}$)

Additional considerations #2: Engineering

- Toroidal mode number:
 - n = 2,3 designs failed as induced transport did not extend far enough into core
 - n = 1 design \rightarrow sideways force <15 MN
 - Lower peak currents are under assessment
 - So are net-force-free designs
- Possible side-effects under investigation:
 - Faster CQ with enhanced losses?
 - 3D pattern of first-wall heating?
 - Kinking of the disrupting plasma?

Main takeaway: our simulations indicate that the n=1 REMC will prevent runaway plateaus in SPARC

- High currents and temperatures in SPARC
- BUT our most-complete simulations suggest a passive 3D coil will prevent them •
 - COMSOL modeling of SPARC disruption 1.
 - Vacuum B-fields + NIMROD 2.
 - NIMROD MHD + ASCOT5 3.
 - ASCOT5 transport coefficients + DREAM 4.

- \rightarrow huge risk of runaways
- \rightarrow vacuum B-fields + magnetic energy
- \rightarrow CQ MHD during SPARC disruption + I_P decay
- \rightarrow advection, diffusion coefficients
- \rightarrow runaway electron evolution

- Checks:
 - DREAM and NIMROD produce similar current quenches
 - DREAM and COMSOL dissipate same magnetic energies •
- Main result: runaway beam is prevented
 - Robust to changes in transport coefficients, thermal quench duration, resistive wall
 - Sensitive to changes in stored magnetic energy and islands

Ongoing: NIMROD simulations of TQ+CQ MHD (V Izzo)

- Dashed lines = artificial TQ + CQ MHD
- Solid lines = TQ + CQ MHD
- TQ duration <1 ms (slowest expected)
- I_P spike observed at end of TQ
- CQ duration shorter with realistic TQ
- Higher amplitudes dB/B achieved
- Similar long-time trends
- \rightarrow Looks good for REMC \odot

Bonus

NIMROD: CQ MHD only

ASCOT5

DREAM

