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A BRIEFF SUMMARY / ADVERTISEMENT OF
RECENT WORK AT ORNL

» Seed runaway electrons problem
» Dissipation of runaway electrons in post-disruption plasmas

» Polarization of synchrotron emission



THE SEED RUNAWAY ELECTRON PROBLEM

For a given plasma state (temperature drop, electric field
evolution, magnetic field stochasticity, etc...), how many
electrons become runaways before the second generation
(avalanche) kicks in?

Not knowing this is one of the weakest links in the assessment
of the potential dangers of runaways in ITER and beyond

The exponential growth predicted/assumed in the avalanche
second generation process depends critical on the seed density

The seed production depends on not well understood process
including the nontrivial spatiotemporal evolution of the
magnetic field stochasticity and the plasma cooling history

This problem is one of the main deliverables of the DOE
Theory Performance Targets for the SCREAM SciDAC project



THE SEED RUNAWAY ELECTRON PROBLEM

What is needed is an accurate computational tool that allows
the efficient/fast exploration of different disruption scenarios

At the minimum, this tool should be able to incorporate
arbitrary time dependences in model parameters as well as
spatial effects (loss of confinement)

Here we present recent progress on the ongoing development
of a unique computational approach to this problem

The first installment of this idea was published some time ago
[Zhang and del-Castillo-Negrete, Phys. Plasmas 24, 092511 (2017).]

Recently, we have made significant progress

» M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov,
Accepted in Journal of Computational Physics (2021).
https://arxiv.org/abs/2104.14561

» D. del-Castillo-Negrete, M.Yang, M. Beidler G. Zhang, IAEA.
28th Int. Conference. IAEA-CN-286/101. Online (2021).



STANDARD APPROACH FOR THE COMPUTATION OF

SEED RE DENSITY

» Solve the FP equation for a Maxwellian i.c. to get f(r,p,t)

» Prescribe the *

and/or physical intuition

runaway region”, Qgg, based on a model

» Integrate f(r,p, t) over the runaway region

nRE(t) = /Q f(l’, P, t) dQ
RE

Example (among several others in the literature):
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PROBABILISTIC APPROACH

Compute the probability, Pgrg, that an electron located at
(r,p) will runaway at or before time t

Probability or runaway in (cos (pitch), momentum) space as function of time

s 4 , t . ty
G- , |
I probability
time
Integrate over the whole space
1041
RE seed density
nre(t) = /P,L;»E(r7 p,t) fo(r,p) dQ E;
c
l l 10°
Probability of Initial condition
runaway e.g., Maxwellian
225 23 23.5 24



ADVANTAGES OF THE PROBABILISTIC APPROACH:
Pre IS INDEPENDENT OF THE INITIAL CONDITION

An advantage of the probabilistic approach is that Pgrg is a
kind of Green’s function for the RE seed density computation

That is, once Prg is computed, the RE seed production can
be directly evaluated for any initial condition, fy, by simply
doing the integral

nge(t) = /PRE(" p, t) fo(r,p) dQ

This allows the fast evaluation of different i.c. scenarios

On the other hand, in the standard approach, for each initial
condition, fo(r, p), we have to solve the whole time-dependent
Fokker-Planck initial value problem to get f(r,p, t)

nre(t) = /Q F(r.p, t) dQ
RE



» In the probabilistic approach, the runaway region Qge(r, p, t)
corresponds to the region where Pre(r,p,t) ~ 1

» In 3D (p,(,r), the boundary of Qgg(r,p, t) is not sharp and
its time-dependent shape can be highly nontrivial.

» This can be problematic for analytical studies based on the
standard approach that assume a simple shape of Qge
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THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT
EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS

increase electric field
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THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT
EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS
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THE PROBABILISTIC APPROACH ALSO PROVIDES THE
EXPECTED RUNAWAY TIME

Z=1 Expected runaway time
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HOW TO COMPUTE THE PROBABILITY OF RUNAWAY Pge?

» Direct Monte-Carlo [Fernandez-Gomez, et al.,Phys. Plasmas
(2012)]. Straightforward to implement but inefficient and
potentially inaccurate due to statistical sampling errors.

» Adjoint Fokker-Planck [Liu, et al., Phys. Plasmas (2016)].
Elegant and more efficient than the direct MC, but it requires
the numerical solution of a PDE.

» Backward-Monte Carlo [Zhang et al., Phys. Plasmas
(2017); Yang et al., Journal Comp. Phys. (2021)]. Based on
the Feynman-Kac formula. Reduces the problem to the
computation of Gaussian integrals. No MC sampling or PDE
solving required! Efficient and unconditionally stable.



PROPOSED FEYNMAN-KAC BASED METHOD
(Simple version)

» To simplify the discussion, consider the following pitch angle,
&, and momentum, p, Fokker-Plank model

of 0 B 182,
+87§(b2f)_§67§2(0 f)=0

» In this case Pre(T — t,p,&) = P(t, p,§) where P(t,p,&) is
the solution of adjoint FP which according to the
Feynman-Kac formula is given by the conditional expectation

P(t,p,&) = E[x(p7,&7) | pr = P, & = €]

x(p1,&é71) = {

where p; and &; are the paths of the stochastic equations

dpt — bl(pta gt) dtv
dée = bo(py, &) dt + o(pe, &) dWs

1) if PT > P,
0, otherwise,



DISCRETIZATION OF FEYNMAN-KAC FORMULA REDUCES
THE COMPUTATION TO GAUSSIAN INTEGRALS

» Introduce a partion T ={0=ty <ty <--- < ty= T}, of
[0, T], and for small At = t,+1 — t, approximate

Pt,i = Pt + bi(pe,, &) At
Etor &y + bo(pry, ty) At + o (P, &) AW,

» Within the time interval [t,, thy1], write

P(tn’p7§) =K [P(tn+1aptn+17£tn+1) | Pt, = p7€tn = g] .

and, using the Gaussian propagator, approximate

_1x%
e 24t

\V2m At

which can becomputed using Gauss-Hermite quadrature rules.

P(tn, p, &) %/P(tn+1,p+ biAt, & + by At + ox) dx ,
R

» Also, an interpolation in (£, p) space is needed at each step.



» Some advantages of the method
» Unconditionally stable (no need to solve PDEs)
» Second order convergence in space, first order in time
> No need to sample orbit (no MC noise)
» Straightforward to parallelize.

» Further details of the method, including:
» GPU accelerated matrix representation implementation for
time-dependent models, e.g. T = T(t) and E = E(t).
» Use of piecewise cubic Hermite interpolating polynomials
» 3D examples including applications to fluid mechanics
» Benchmarks with analytical solutions and comparisons with
explicit and implicit adjoint Fokker-Planck solvers

can be found in:

M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov, “A
Feynman-Kac based numerical method for the exit time probability
of a class of transport problems.” Accepted for publication in
Journal of Computational Physics (2021).



3D RUNAWAY ELECTRON ACCELERATION MODEL

3D+1 Fokker-Planck equation for f(r, p,&; t)

gi—f—i—R—i-C—l-D, with

. _ g2
» Electric field force F{f} = —E [5 g—z + (1}){)22]

» Synchrotron radiation reaction force

Ry = M2 ey - 2 [tea-e])

» Collision operator
10 of Cg 0 of
fl=—=—<p° — f — _—1(1-¢%) =
e pzé’p{p [CA0P+CF]}+p26§ [( 5)36]’
» Radial diffusion operator

Dif} = 15 [ Dg’:] ,



COLLISIONS MODEL

X
Calp) = Deevgrwi)
1 1 5,
Calp) = 37eh s |20~ ) + 5
C/:(p) = 217ee\77"¢(x).
N\ 2 . =
wherex:%g, y= 1+(5p), 0="T = 31:2

o)== [T w0 = 5 [qzs(x) %

where 7A_(t) denotes the time-dependent plasma temperature.



DIFFUSION, COOLING, AND ELECTRIC FIELD MODELS

» Rechester-Rosenbluth type radial diffusion model

. A iB\?
D:DoF(r)G(p), D0:7qu||R ? y

with spatial and momentum dependence

F(r)= % {1 + tanh [r ZDrD] } . G(p) = e (P/BP’

» Exponential cooling model with thermal quench time scale t,

T= 7A—f+ (7/\_0— 7A—f> e_t/t*,

» Electric field dependence from Ohms's law and Spitzer

conductivity
L~ 13/2
T
E(t) = B | —>
T(t)




PROBABILITY OF RUNAWAY IN 3-DIMENSIONS
Momentum X Pitch Angle x Minor Radius space
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TIME EVOLUTION OF 3-D 80% PROBABILITY OF
RUNAWAY ISO-SURFACE

t=735 t=1551

Minor radius
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DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
THERMAL QUENCH TIME SCALE

[+-Z=1 T, =3keV
+-Z=18 T, =3 keV/
-+ Z=1 T,,=10keV|
|+ Z=18 T, =10 keV|

(b)

Seed production has a strong dependence on thermal quench time and
initial temperatura
There is a weaker dependence on Z

Diffusion reduces the gradient of the radial seed density profile at the edge
and this effect increases with the termal quench time

If the electric field does not grow fast enough, radial diffusion will deconfine
the electrons before they can be accelerated

The onset of the saturation of the seed runaway population is significantly
affected by the duration of the thermal quench.

Z=1and Ty=3 keV ()

Time normalized by 1/ny=0.1 ms

Dy=10? m?/s (~6B/B ~10*)
Ap=2

Ep=2x 103 V/m

To=3 keV T=0.005 keV
7=6000

Prin=l Pra=15 (1 MeV)

RE_Production_t_star_r_dependence_03122021.m



DEPENDENCE OF SEED RUNAWAY ELECTRONS ON

Ne/nge(0)

RADIAL DIFFUSIVITY

production rate profile

is not affected by the value of D,.
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As expected, seed production decreases when D, increases and this
effect is more noticiable near the edge

Increasing the radial diffusivity leads to the “flattening” of the seed

However, the onset of the saturation of the seed runaway population

Do normalized by 10% m?%/s

1/vo=0.1 ms

Vpte=3

Ty=3 keV

Z=1

Ap=2

Ey=2x 103 V/m

To=3 keV T=0.005 keV
7=6000
Prin=1 Ppo=15 (1 MeV)

RE_Production_Dr_r_dependence_04042021.m



DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
ELECTRIC FIELD
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* Seed production exhibits the typical increase with E,

¢ As the electric field decreases the profiles become slightly shallow
due to the loss of confinement before runaway acceleration

* The electric field can also significantly delay the onset of the seed RE
generation
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DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
MOMENTUM AND RADIAL DEPENDENCE OF DIFFUSIVITY

As a simple model of the increased stochasticity at the edge and
the suppression of diffusion for high energy RE we consider

D(r.p) = % {1 + tanh [r ZDrD} } e~ (p/Bp)°

where Dy is the Rechester-Rosenbluth diffusivity
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CONCLUDING REMARKS

The probabilistic approach shifts attention from the
computation of the RE distribution (e.g., solving the FP eq)
to the computation of the probability of runaway Pgre

The Pre “maps” provide by themselves a unique insight on
the RE generation process

When it comes to the computation of the production rate, the
PrEe acts as a Green's function from which the evolution of
the seed density can be explored for many different initial
conditions

As a bonus, the probabilistic approach also provides the
expected runaway time

However the computation of the Pgg is not trivial and could
be hard/time consuming

Here we presented current progress on our approach based on
the use of the Feynman-Kac formula



CONCLUDING REMARKS

The Feynman-Kac formula approach (also known as the
Backward Monte Carlo method) reduces the problem to the
computation of Gaussian integrals that can be computed
efficiently using Gauss-Hermite quadrature algorithms

There is also the need for interpolation that we do using
picewise cubic Hermite interpolation polynomials.

A GPU accelerated matrix representation was implemented to
compute the entire time evolution of the exit time probability
using a single pass of the algorithm.

We discussed applications to different disruption scenarios in
3D-time (radius, pitch angle and momentum)

Of particular interest was the dependence of the production
rate on confinement losses cause by magnetic field
stochasticity that we modeled we radial diffusion

Future work includes more detailed orbit dynamics and
dynamic coupling to the plasma state [Hirvijoki, et al., Phys. of
Plasmas 25, 062507 (2018)].



