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A BRIEFF SUMMARY / ADVERTISEMENT OF
RECENT WORK AT ORNL

I Seed runaway electrons problem

I Dissipation of runaway electrons in post-disruption plasmas

I Polarization of synchrotron emission



THE SEED RUNAWAY ELECTRON PROBLEM

I For a given plasma state (temperature drop, electric field
evolution, magnetic field stochasticity, etc...), how many
electrons become runaways before the second generation
(avalanche) kicks in?

I Not knowing this is one of the weakest links in the assessment
of the potential dangers of runaways in ITER and beyond

I The exponential growth predicted/assumed in the avalanche
second generation process depends critical on the seed density

I The seed production depends on not well understood process
including the nontrivial spatiotemporal evolution of the
magnetic field stochasticity and the plasma cooling history

I This problem is one of the main deliverables of the DOE
Theory Performance Targets for the SCREAM SciDAC project



THE SEED RUNAWAY ELECTRON PROBLEM

I What is needed is an accurate computational tool that allows
the efficient/fast exploration of different disruption scenarios

I At the minimum, this tool should be able to incorporate
arbitrary time dependences in model parameters as well as
spatial effects (loss of confinement)

I Here we present recent progress on the ongoing development
of a unique computational approach to this problem

I The first installment of this idea was published some time ago
[Zhang and del-Castillo-Negrete, Phys. Plasmas 24, 092511 (2017).]

I Recently, we have made significant progress

I M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov,
Accepted in Journal of Computational Physics (2021).
https://arxiv.org/abs/2104.14561

I D. del-Castillo-Negrete, M.Yang, M. Beidler G. Zhang, IAEA.
28th Int. Conference. IAEA-CN-286/101. Online (2021).



STANDARD APPROACH FOR THE COMPUTATION OF
SEED RE DENSITY

I Solve the FP equation for a Maxwellian i.c. to get f (r,p, t)

I Prescribe the “runaway region”, ΩRE , based on a model
and/or physical intuition

I Integrate f (r,p, t) over the runaway region

nRE (t) =

∫

ΩRE

f (r,p, t) dΩ

Example (among several others in the literature):
A. Stahl et al
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under certain conditions [15, 16]. It has previously been 
investigated analytically or using Monte-Carlo simulations 
[16, 17] or purpose-built finite-difference tools [17, 18]. 
Using code to model a temperature drop enables the effi-
cient study of a wider range of scenarios, and allows full 
use of other capabilities of code, such as avalanche gen-
eration or synchrotron radiation reaction. Here, we restrict 
ourselves to a proof-of-principle demonstration, and leave a 
more extensive investigation to future work.

To facilitate a comparison to the theoretical work by Smith 
and Verwichte [18], we will model a rapid exponential temper-
ature drop, described by

( ) ( ) /= + − − !T t T T T e ,t t
f 0 f (3)

with T0  =  3.1 keV the initial temperature, =T 31f  eV the final 
temperature, and =!t 0.3  ms the cooling time scale. We also 
include a time-dependent electric field described by
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with ( / ) /=E E 1 530D 0  the initial normalized electric field. 
The temperature and electric-field evolutions are shown in 
figure 1(a) and are the same as those used in figure 5 of [18], 
as are all other parameters in this section.

Figure 1(b), in which the additional parameters 
= ⋅n 2.8 10 19  m−3, and =Z 1eff  were used, illustrates the dis-

tribution-function evolution during the temperature drop. The 
figure  shows that as the temperature decreases, most of the 
electrons quickly adapt. At any given time t, the bulk of the dis-
tribution remains close to a Maxwellian corresponding to the 
current temperature T (t). The initially slightly more energetic 
electrons, although part of the original bulk population, ther-
malize less efficiently. On the short cooling time-scale, they 
remain as a distinct tail, and as the thermal speed decreases 
they become progressively less collisional. This process is evi-
dent in the first three time steps shown (t  =  0.025–0.83 ms). In 
the final time step, the electric field has become strong enough 
to start to affect the distribution, and a substantial part of the 
high-energy tail is now in the runaway region. This can be 
seen from the qualitative change in the tail of the distribution, 
which now shows a positive slope associated with a strong 
flow of particles to higher momenta.

For the temperature evolution in equation  (3), analytical 
results for the hot-tail runaway generation were obtained in 
[18]. Assuming the background density to be constant, the 
runaway fraction at time t can be written as
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where ( ) ( / ) ( ) ( / )(ˆ ˆ )τ π ν π= − = −! !t t t t t3 4 3 4ee  is a  nor-
malized time, ( ) ( )[ ] τ= +u t x t30 , x[0] is the speed nor-
malized to the initial thermal speed, and uc is related to the 
critical speed for runaway generation: ( ) ( )[ ] τ= +u t x t3c c

0 . 
Equation (5), which corresponds to equation (18) in [18], is 
only valid when a significant temperature drop has already 
taken place (as manifested by the appearance of the cooling 
time scale !t  as a ‘delay’ in the expression for τ, see [18]). 
Equation (5) is derived in the absence of an electric field; only 
an exponential drop in the bulk temperature is assumed. The 
electric field shown in figure 1(a) is only used to define a run-
away region, so that the runaway fraction can be calculated. 
In other words, it is assumed that the electric field does not 
have time to influence the distribution significantly during the 
temper ature drop.

The runaway fraction calculated using equation (5) includes 
only the electrons in the actual runaway region, i.e. particles 
whose trajectories (neglecting collisional momentum-space 
diffusion) are not confined to a region close to the origin. 
In this case, the lower boundary of the runaway region is 
given in terms of the limiting (non-relativistic) momentum 
y for a given ξ: ( [( ) ])δ ξ= + −ξ

−y E E1 /2 1c
2

c
1/2 [17], where 

/π= ΛE e n mc4 lnc
3 2 is the critical electric field for runaway 

generation [19]. The temperature drop does however lead to an 
isotropic high-energy tail (in the absence of an electric field). 
By defining the runaway region as ( [ / ]) /δ> = − −y y E E 1c

2
c

1 2, 
thereby including all particles with >v vc, equation (5) can be 
simplified to
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where erfc(x) is the complementary error function. By default, 
code uses such an isotropic runaway region, which is a good 

Figure 1. (a) Temperature and electric-field evolution in equations (3) and (4). (b) Parallel (ξ = 1) electron distributions (solid) and 
corresponding Maxwellians (dashed) at several times during the temperature drop in (a). A momentum grid with a fixed reference 
temperature ˜ =T 100 eV was used and the distributions are normalized to F(y  =  0) in the final time step to facilitate a comparison.
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under certain conditions [15, 16]. It has previously been 
investigated analytically or using Monte-Carlo simulations 
[16, 17] or purpose-built finite-difference tools [17, 18]. 
Using code to model a temperature drop enables the effi-
cient study of a wider range of scenarios, and allows full 
use of other capabilities of code, such as avalanche gen-
eration or synchrotron radiation reaction. Here, we restrict 
ourselves to a proof-of-principle demonstration, and leave a 
more extensive investigation to future work.

To facilitate a comparison to the theoretical work by Smith 
and Verwichte [18], we will model a rapid exponential temper-
ature drop, described by
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with T0  =  3.1 keV the initial temperature, =T 31f  eV the final 
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figure 1(a) and are the same as those used in figure 5 of [18], 
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current temperature T (t). The initially slightly more energetic 
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remain as a distinct tail, and as the thermal speed decreases 
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the final time step, the electric field has become strong enough 
to start to affect the distribution, and a substantial part of the 
high-energy tail is now in the runaway region. This can be 
seen from the qualitative change in the tail of the distribution, 
which now shows a positive slope associated with a strong 
flow of particles to higher momenta.

For the temperature evolution in equation  (3), analytical 
results for the hot-tail runaway generation were obtained in 
[18]. Assuming the background density to be constant, the 
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away region, so that the runaway fraction can be calculated. 
In other words, it is assumed that the electric field does not 
have time to influence the distribution significantly during the 
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The runaway fraction calculated using equation (5) includes 
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where erfc(x) is the complementary error function. By default, 
code uses such an isotropic runaway region, which is a good 

Figure 1. (a) Temperature and electric-field evolution in equations (3) and (4). (b) Parallel (ξ = 1) electron distributions (solid) and 
corresponding Maxwellians (dashed) at several times during the temperature drop in (a). A momentum grid with a fixed reference 
temperature ˜ =T 100 eV was used and the distributions are normalized to F(y  =  0) in the final time step to facilitate a comparison.
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approximation in the case of only Dreicer and avalanche gen-
eration (especially once the runaway tail has become sub-
stantial); however, in the early stages of hot-tail-dominated 
scenarios, the isotropic runaway region significantly overes-
timates the actual runaway fraction, and the lower boundary 
ξyc  must be used.

Figure 2 compares the runaway density evolution com-
puted with code, using both ξ-dependent and isotropic 
runaway regions, to equations  (5) and (6), respectively. The 
parameters of the hot-tail scenario shown in figure  1 were 
used, and no avalanche source was included in the calcul-
ation. The collision operator used in [18] is the non-relativ-
istic limit of equation (2), with =ξc 0 (since the distribution 
is isotropic in the absence of an electric field). code results 
using both this operator (red, dotted) and the full equation (2) 
(yellow, dash–dotted) are plotted in figure 2, with the latter  
producing  ∼ 50% more runaways in total. This differ-
ence can likely be explained by the relatively high initial  
temper ature (3 keV) in the scenario considered, in which 
case the non-relativistic operator is not strictly valid for the 
highest-energy particles. Good agreement between code 
results and equations  (5) and (6) (black, solid) is seen for 
the saturated values in the figure. A code calculation where 
the electric-field evolution is properly included in the kinetic 
equation  (corresp onding to the distribution evolution in 
figure 1(b)) is also included (blue, dashed), showing increased 
runaway production. With the isotropic runaway region (figure 
2(b)), the increase is smaller than a factor of 2, and neglecting 
the influence of the electric field can thus be considered rea-
sonable for the parameters used, at least for the purpose of 
gaining qualitative understanding. With the ξ-dependent run-
away region (figure 2(a)), the change in runaway generation is 
more pronounced, and the inclusion of the electric field leads 
to an increase by almost an order of magnitude. Note that the 
final runaway density with the electric field included is very 
similar in figures 2(a) and (b), indicating that the details of the 
lower boundary of the runaway region become unimportant 
once the tail is sufficiently large. Throughout the remainder of 
this paper we will make use of the isotropic runaway region.

We conclude that, in order to obtain quantitatively accu-
rate results, the electric field should be properly included, 
and a relativistic collision operator should be used. This is 

especially true when modelling ITER scenarios, where the 
initial temperature can be significantly higher than the 3 keV 
used here.

3. Conservative linearized Fokker–Planck collision 
operator

Treating the runaway electrons as a small perturbation to a 
Maxwellian distribution function, the Fokker–Planck oper-
ator for electron–electron collisions [20, 21] can be linear-
ized and written as { } { } = +!C f C f C Cl tp fp. The so-called 
test- particle term, =C C f f,tp nl

1 M{ }, describes the pertur-
bation colliding with the bulk of the plasma, whereas the 
field- particle term, { }=C C f f,fp nl

M 1 , describes the reaction 
of the bulk to the perturbation. Here Cnl is the non-linear 
Fokker–Planck–Landau operator, fM denotes a Maxwellian, 
and = −f f f1 M the perturbation to it ( ≪f f1 M). Collisions 
described by { }C f f,1 1  are neglected since they are second 
order in f1. The full linearized operator Cl conserves particles, 
momentum and energy. Since it is proportional to a factor 

( )−yexp 2 , the field-particle term mainly affects the bulk of the 
plasma, and is therefore commonly neglected when studying 
runaway-electron kinetics. The test-particle term in equa-
tion (2) only ensures the conservation of particles, however, 
not momentum or energy.

Under certain circumstances, it is necessary to use a fully 
conservative treatment also for the runaway problem, in par-
ticular when considering processes where the conductivity of 
the plasma is important. In the study of runaway dynamics 
during a tokamak disruption using a self-consistent treatment 
of the electrical field, accurate plasma-current evolution is 
essential, and the full linearized collision operator must be 
used. A non-linear collision operator valid for arbitrary par-
ticle (and bulk) energy has been formulated [22, 23]. The col-
lision operator originally implemented in code is the result 
of an asymptotic matching between the highly relativistic 
limit of the test-particle term of the linearized version of that 
operator, with the usual non-relativistic test-particle operator 
[24], and is given in equation (2). The relativistic field-particle 
term is significantly more complicated, however, and its use 
would be computationally more expensive. Here we instead 

Figure 2. Hot-tail runaway density obtained using code—with (blue, dashed) and without (yellow, dash–dotted; red, dotted) an electric 
field included during the temperature drop—and the analytical estimates equations (5) and (6) (black, solid), for the temperature and E-field 
evolution in figure 1(a). An (a) ξ-dependent and (b) isotropic lower boundary of the runaway region was used. The collision operator in 
equation (2) was used for the blue and yellow lines, whereas its non-relativistic limit was used for the red and black lines.
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PROBABILISTIC APPROACH

I Compute the probability, PRE , that an electron located at
(r,p) will runaway at or before time t

low
probability

high
probability

t1 t2 t3

time

Probability or runaway in (cos (pitch), momentum) space as function of time

I Integrate over the whole space

Probability of 
runaway

Initial condition
e.g., Maxwellian

RE seed density

ADVANTAGES OF THE PROBABILISTIC APPROACH:
PRE IS INDEPENDENT OF THE CONDITION

I An advantage of the probabilistic approach is that PRE is a
kind of Green’s function for the RE seed density computation

I That is, once PRE is computed, the RE seed production can
be simply evaluated for any initial condition, f0, by simply
doing the integral

nRE (t) =

Z
PRE (r,p, t) f0(r,p) d⌦

I This allows the fast evaluation of di↵erent i.c. scenarios

I On the other hand, in the standard approach, for each initial
condition, f0(r,p), we have to solve the whole time-dependent
Fokker-Planck initial value problem to get f (r,p, t)

nRE (t) =

Z

⌦RE

f (r,p, t) d⌦



ADVANTAGES OF THE PROBABILISTIC APPROACH:
PRE IS INDEPENDENT OF THE INITIAL CONDITION

I An advantage of the probabilistic approach is that PRE is a
kind of Green’s function for the RE seed density computation

I That is, once PRE is computed, the RE seed production can
be directly evaluated for any initial condition, f0, by simply
doing the integral

nRE (t) =

∫
PRE (r,p, t) f0(r,p) dΩ

I This allows the fast evaluation of different i.c. scenarios

I On the other hand, in the standard approach, for each initial
condition, f0(r,p), we have to solve the whole time-dependent
Fokker-Planck initial value problem to get f (r,p, t)

nRE (t) =

∫

ΩRE

f (r,p, t) dΩ



I In the probabilistic approach, the runaway region ΩRE (r,p, t)
corresponds to the region where PRE (r,p, t) ∼ 1

I In 3D (p, ζ, r), the boundary of ΩRE (r,p, t) is not sharp and
its time-dependent shape can be highly nontrivial.

I This can be problematic for analytical studies based on the
standard approach that assume a simple shape of ΩRE
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shows that not only the amplitude of the production rate decrease but also the onset of the saturation of the seed 
runaway population is significantly affected by the duration of the thermal quench. This is important because, as 
the quench time increases, the onset might take so long that the seed RE might not play a significant role before 
the plasma conditions change significantly.  

 

 
FIG.1. 3D time-dependent probability of runaway computed with the BMC code. The panels show the probability of runaway 

at a fixed time with yellow (blue) denoting high (low) values of the normalized probability of runaway. The rows show the 

projections on the (r,x), (x,p), and (r,p) planes and, for each row, the columns scan different cuts along the third variable. 

 
 

 
FIG. 2. Dependence of seed runaway electron density on thermal quench time scale, t*. Panel (a) shows the seed density at 

the magnetic axis, nRE(0), normalized with the plasma density, n0,  as function of n0t* , where n0 is the thermal collision frequency, 

for different values of Z and initial plasma temperatures TM. Panel (b) shows the radial dependence of the seed density as 

function of r, normalized by the value at r=0, for different values of n0t*, with Z=1 and TM=3 keV. Panel (c) shows the time 

evolution of the seed density at r=0.5 for different values of n0 t*, with Z=1 and TM=3 keV. In all these simulation E0=10-3 

D0=0.01 and Dp=2. 
 
Figure 3 considers the dependence of the RE seed generation on the constant radial diffusivity, which value is 
varied from 10-4 to 10-1. The radial transport model is based on the Rechester-Rosenbluth quasilinear teory, D0 ~ 
(d B/B)2, which for a typical tokamak assigns a dimensionless value D0 ~ 0.01 for a magnetic fluctuation level of 
the order dB/B ~10-4. As expected, Fig. 3(a) shows a decrease of the production rate with an increase in D0. The 
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As shown in Fig.3-(a), the production rate has a strong dependence on the time scale of the thermal quench and 
on the initial plasma temperature. On the other hand, the dependence on Z is comparatively weaker with higher Z 
exhibiting a reduction of the production rate. The decrease of nRE with n0 t* is due to the fact that, as shown in 
Fig.1 a fast (slow) thermal quench results in a fast (slow) rise of the electric field. For a given evolution of the 
electric field, the probability that an electron runs away depends on the time scale and strength of the momentum 
dissipation which is larger for longer thermal quench times.   The significant increase of the production rate on 
the initial plasma temperature is characteristic of the so-called hot-tail generation.  These results correspond to the 
production rate at the magnetic axis. However, as mentioned above, one of the goals of the present study is to 
explore the dependence of the production rate on the minor radius, r. Figure 3-(b) shows the normalized production 
rate as function of r, normalized by the tokamak minor radius a. Note that, as shown in Fig.3-(a), the production 
rate in these simulations varies by up to eight orders of magnitude, and therefore, for visualization purposes, in 
Fig.3-(b) we show the production rate normalized to the peak value at r=0 in each case. It is observed that, as the 
thermal quench time increases, the radial profile of the production relaxes towards smaller values. This radial 
dependence is caused by the diffusive loss of confinement which role increases as the electric field acceleration 
time scale decreases. That is, if the electric field does not grow fast enough, radial diffusion will deconfine the 
electrons before they can be accelerated and become seed runaways.  In these simulations the diffusivity was held 
constant, but a more realistic scenario, that we will consider below, is a diffusivity that increases with r due to an 
excess of magnetic field stochasticity in the edge. Another effect that we will also consider below has to do with 
the momentum dependence of the diffusivity.   The evolution in time of the production rate is shown in Fig.3-(c) 
that shows that not only the amplitude of the production rate decrease but also the onset of the saturation of the 
seed runaway population is significantly affected by the duration of the thermal quench. This s important because, 
as the quench time increases, the onset might take so long that the seed RE might not play a significant role before 
the plasma conditions change significantly.  
 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a) (b) (c)



THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT
EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS

TIME EVOLUTION OF PROBABILITY OF RUNAWAY PRE

Radiation reaction force ⇠ 1/⌧ , collisions ⇠ Z , acceleration ⇠ E .
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THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT
EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS

28 Diego del-Castillo-Negrete

Probability of runaway in time 
dependent scenarios
• An accurate computation of RE generation requires the incorporation of 

time dependent plasma conditions, e.g. T=T(t) and E=E(t).

• As a first step we applied the BMC method to time dependent electric 
fields. Transient PRE at t=0.6
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THE PROBABILISTIC APPROACH ALSO PROVIDES THE
EXPECTED RUNAWAY TIME

26 Diego del-Castillo-Negrete

Probability of runaway and expected 
runaway time

Z=1

Z=5

EXPECTED RUNAWAY TIME

EXPECTED RUNAWAY TIME

Expected runaway time

E=6, t=1



HOW TO COMPUTE THE PROBABILITY OF RUNAWAY PRE?

I Direct Monte-Carlo [Fernandez-Gomez, et al.,Phys. Plasmas
(2012)]. Straightforward to implement but inefficient and
potentially inaccurate due to statistical sampling errors.

I Adjoint Fokker-Planck [Liu, et al., Phys. Plasmas (2016)].
Elegant and more efficient than the direct MC, but it requires
the numerical solution of a PDE.

I Backward-Monte Carlo [Zhang et al., Phys. Plasmas
(2017); Yang et al., Journal Comp. Phys. (2021)]. Based on
the Feynman-Kac formula. Reduces the problem to the
computation of Gaussian integrals. No MC sampling or PDE
solving required! Efficient and unconditionally stable.



PROPOSED FEYNMAN-KAC BASED METHOD
(Simple version)

I To simplify the discussion, consider the following pitch angle,
ξ, and momentum, p, Fokker-Plank model

∂f

∂t
+

∂

∂p
(b1f ) +

∂

∂ξ
(b2f )− 1

2

∂2

∂ξ2
(σ2f ) = 0

I In this case PRE (T − t, p, ξ) = P(t, p, ξ) where P(t, p, ξ) is
the solution of adjoint FP which according to the
Feynman-Kac formula is given by the conditional expectation

P(t, p, ξ) = E[χ(pT , ξT ) | pt = p, ξt = ξ]

χ(pT , ξT ) =

{
1, if pT ≥ p∗,

0, otherwise,

where pt and ξt are the paths of the stochastic equations

dpt = b1(pt , ξt) dt,

dξt = b2(pt , ξt) dt + σ(pt , ξt) dWt



DISCRETIZATION OF FEYNMAN-KAC FORMULA REDUCES
THE COMPUTATION TO GAUSSIAN INTEGRALS

I Introduce a partion T = {0 = t0 < t1 < · · · < tN = T}, of
[0,T ], and for small ∆t = tn+1 − tn approximate

ptn+1 ≈ ptn + b1(ptn , ξ) ∆t

ξtn+1 ≈ ξtn + b2(ptn , ξtn) ∆t + σ(ptn , ξtn) ∆W ,

I Within the time interval [tn, tn+1], write

P(tn, p, ξ) = E
[
P(tn+1, ptn+1 , ξtn+1) | ptn = p, ξtn = ξ

]
.

and, using the Gaussian propagator, approximate

P(tn, p, ξ) ≈
∫

R
P (tn+1, p + b1∆t, ξ + b2∆t + σx)

e−
1
2

x2

∆t√
2π∆t

dx ,

which can becomputed using Gauss-Hermite quadrature rules.

I Also, an interpolation in (ξ, p) space is needed at each step.



I Some advantages of the method
I Unconditionally stable (no need to solve PDEs)
I Second order convergence in space, first order in time
I No need to sample orbit (no MC noise)
I Straightforward to parallelize.

I Further details of the method, including:
I GPU accelerated matrix representation implementation for

time-dependent models, e.g. T = T (t) and E = E (t).
I Use of piecewise cubic Hermite interpolating polynomials
I 3D examples including applications to fluid mechanics
I Benchmarks with analytical solutions and comparisons with

explicit and implicit adjoint Fokker-Planck solvers

can be found in:

M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov, “A

Feynman-Kac based numerical method for the exit time probability

of a class of transport problems.” Accepted for publication in

Journal of Computational Physics (2021).



3D RUNAWAY ELECTRON ACCELERATION MODEL

3D+1 Fokker-Planck equation for f (r , p, ξ; t)

∂f

∂t
= F +R+ C +D , with

I Electric field force F{f } = −E
[
ξ ∂f∂p +

(1−ξ2)
p

∂f
∂ξ

]

I Synchrotron radiation reaction force

R{f } =
1

τ

{
1

p2

∂

∂p

[
p3γ

(
1− ξ2

)
f
]
− ∂

∂ξ

[
1

γ
ξ
(
1− ξ2

)
f

]}
.

I Collision operator

C{f } =
1

p2

∂

∂p

{
p2

[
CA

∂f

∂p
+ CF f

]}
+
CB

p2

∂

∂ξ

[(
1− ξ2

) ∂f
∂ξ

]
,

I Radial diffusion operator

D{f } =
1

r

∂

∂r

[
rD
∂f

∂r

]
,



COLLISIONS MODEL

CA(p) = ν̄ee v̄
2
T

ψ(x)

x

CB(p) =
1

2
ν̄ee v̄

2
T

1

x

[
Z + φ(x)− ψ(x) +

δ4

2
x2

]

CF (p) = 2 ν̄ee v̄T ψ(x) .

where x = 1
v̄T

p
γ , γ =

√
1 +

(
δ̃p
)2
, δ̃ = ṽT

c =
√

2T̃
mc2

φ(x) =
2√
π

∫ x

0
e−s

2
ds , ψ(x) =

1

2x2

[
φ(x)− x

dφ

dx

]

and the time dependence enters through the variables

v̄T (t) =

√
T̂

T̃
, ν̄ee(t) =

(
T̃

T̂

)3/2
ln Λ̂

ln Λ̃
, δ(t) =

√
2T̂

mc2

where T̂ (t) denotes the time-dependent plasma temperature.



DIFFUSION, COOLING, AND ELECTRIC FIELD MODELS

I Rechester-Rosenbluth type radial diffusion model

D = D̂0 F (r)G (p) , D̂0 = πqv‖R

(
δB

B

)2

,

with spatial and momentum dependence

F (r) =
1

2

{
1 + tanh

[
r − rD
LD

]}
, G (p) = e−(p/∆p)2

.

I Exponential cooling model with thermal quench time scale t∗

T̂ = T̂f +
(
T̂0 − T̂f

)
e−t/t∗ ,

I Electric field dependence from Ohms’s law and Spitzer
conductivity

E (t) = E0

[
T̂0

T̂ (t)

]3/2

.
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DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
THERMAL QUENCH TIME SCALE

������

���

D0=102 m2/s (~dB/B ~10-4 )
Dp=2
E0=2 x 10-3 V/m 
T0=3 keV  Tf=0.005 keV
t=6000
Pmin=1   Pmax=15  (1 MeV)

Z=1 and TM=3 keV Z=1 and TM=3 keV

• Seed production has a strong dependence on thermal quench time and 
initial temperatura 

• There is a weaker dependence on Z 

• Diffusion reduces the gradient of the radial seed density profile at the edge 
and this effect increases with the termal quench time

• If the electric field does not grow fast enough, radial diffusion will deconfine 
the electrons before they can be accelerated

• The onset of the saturation of the seed runaway population is significantly 
affected by the duration of the thermal quench. 

RE_Production_t_star_r_dependence_03122021.m

Time normalized by 1/n0 =0.1 ms



DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
RADIAL DIFFUSIVITY

1/n0 =0.1 ms
n0 t*=3
TM=3 keV
Z=1
Dp=2
E0=2 x 10-3 V/m
T0=3 keV  Tf=0.005 keV
t=6000
Pmin=1   Pmax=15  (1 MeV)

• As expected, seed production decreases when D0 increases and this 
effect is more noticiable near the edge 

• Increasing the radial diffusivity leads to the “flattening” of the seed 
production rate profile

• However, the onset of the saturation of the seed runaway population 
is not affected by the value of D0 . 
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rate of decrease is significantly enhanced as the plasma boundary is approached; a direct manifestation of electrons 
losing confinement before they can accelerate to runaway energies. This effect is also observed in Fig.3-(b) that 
shows a flattening of the radial profile of the production rate as the diffusivity increases. However, as Fig.3-(c) 
shows, the value of the diffusivity does not affect significantly the onset time of the runaway production. 
 

 
FIG. 3. Dependence of seed runaway electron density on normalized constant radial diffusivity, D0. Panel (a) shows the seed 
density at the magnetic axis, nRE(0), normalized with the plasma density, n0, as function of D0 at different radii. Panel (b) shows 
the seed density as function of r, normalized by the value at r=0, for different values of D0. Panel (c) shows the time evolution 
of the seed density at r=0 normalized with the plasma density, n0, for different values of D0. In all these simulations, Z=1, n0 
t*=3, TM=3 keV, E0=10-3 and Dp=2. 
 
Figure 4 shows the dependence of the production rate on the electric field amplitude. As expected, and as observed 
in previous studies, the production rate grows at an almost linear rate (note however that Fig.4(a) has a log-linear 
scale). The role of the radial diffusion in this case is shown in the normalized radial profile of the production rate 
in Fig.4(b). It is observed that, as the electric field decreases the profiles become slightly shallow due to the loss 
of confinement before runaway acceleration. In addition to its role in the amplitude of the production rate, as 
Fig.4(c) shows the electric field can also significantly delay the onset of the seed RE generation. 

 

 
FIG.4. Dependence of seed runaway electron density on electric field at t=0, E0, normalized with ED/2 where ED is the 
Dreicer field. Panel (a) shows the seed density at the magnetic axis, nRE(0), normalized with the plasma density, n0, as 
function of E0. Panel (b) shows the seed density as function of r, normalized by the value at r=0, for different values of E0. 
Panel (c) shows the time evolution of the seed density at r=0 normalized with the plasma density, n0, for different values of 
E0. In all these simulations, Z=1, n0 t*=3, TM=3 keV, D0=0.01 and Dp=2. 

 
Up to now the diffusivity has been assumed constant. However, MHD simulations indicate that during the thermal 
quench the magnetic field stochasticity tends to concentrate near the edge. To study this effect Fig.5(a) shows the 
production rate radial profile for the spatially dependent diffusivity model where rm denotes the approximate 
location of the last closed flux surface, which in the Rechester-Rosenbluth model translates into the critical radius 
beyond which radial diffusion is significant. It is observed that as rm increases, the production rate develops a 
pedestal near the edge. Another interesting effect is the dependence of the diffusivity on the momentum. 
Numerical results indicate that the radial diffusion caused by magnetic field stochasticity tends to decrease when 
the momentum decreases. To capture this effect, we adopt a heuristic model that assumes an exponential decay 
of D0 with p. Figure 5(b) shows the radial profile of the production rate for different values of the Dp parameter. 
The limit Dp à0 corresponds to no diffusivity and as expected the production rate is flat and large. As Dp 
increases, radial diffusion is suppressed.  
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D0 normalized by 104 m2/s



DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
ELECTRIC FIELD

1/n0 =0.1 ms
n0 t*=3 
TM=3 keV  
Z=1
D0=102 m2/s (~dB/B ~10-4 )
Dp=2
T0=3 keV  Tf=0.005 keV
t=6000
Pmin=1  Pmax=15  (1 MeV)

• Seed production exhibits the typical increase with E0 

• As the electric field decreases the profiles become slightly shallow 
due to the loss of confinement before runaway acceleration

• The electric field can also significantly delay the onset of the seed RE 
generation

RE_Production_E_r_dependence_04052021.m
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DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
MOMENTUM AND RADIAL DEPENDENCE OF DIFFUSIVITY

As a simple model of the increased stochasticity at the edge and
the suppression of diffusion for high energy RE we consider

D(r , p) =
D0

2

{
1 + tanh

[
r − rD
LD

]}
e−(p/∆p)2

where D0 is the Rechester-Rosenbluth diffusivity
 IAEA-CN-286/1011  

 

 
 

 
FIG. 5. Seed runaway electron density as function of r for different radial profiles (a), and different momentum dependences 
(b) of the radial diffusivity. The parameter rm determines the boundary of the stochastic magnetic field, and the parameter Dp 
determines the strength of the momentum dependent diffusion suppression. In all these simulations, E0 =10-3, Z=1, n0 t*=3, 
TM=3 keV, D0=0.01 and Dp=2. 
 
3. MITIGATION OF RUNAWAY ELECTRONS BY HIGH Z IMPURITY INJECTION 

In this section, we present results on the modelling and simulation of RE mitigation by Ne MGI secondary 
impurity injection into the post-disruption RE plateau beam of DIII-D discharge #164409.  Further information 
and a more complete discussion of can be found in [7]. Here, we limit attention to the role played by the loss of 
spatial confinement of the RE during the impurity-based dissipation. The computational tool is an upgraded 
version [7] of the Kinetic Orbit Runaway electron Code (KORC) [6] that incorporates time dependent magnetic 
reconstructions, linearized Coulomb collision operator with effects of partially-ionized impurities, line-integrated 
electron density measurements fit to a spatiotemporal model, and different neutral impurity transport models. The 
toroidal inductive electric field calculated from JFIT magnetic reconstructions using !! = −1/2'(	*+"/*,, 
agrees well with experimental loop voltage measurements. All partially-ionized charge states are assumed to have 
the same profile as electrons, with -#$!" -#$!#⁄ = 2 for DIII #164409. The RE initial condition corresponds to a 
10	MeV monoenergetic and 100 monopitch beam distributed uniformly within the sampling domain limited by a 
prescribed flux surface. As shown in Fig.6, KORC simulations agree well with the experimental results. The decay 
of the current is not only driven by the impurity induced energy dissipation of the RE beam (green trace in Fig.6); 
the loss of confinement (red trace in Fig. 6) plays also an important role, as well as the diffusion of the pitch angle 
(not shown) that leads to a reduction of the parallel component of the velocity contributing to the RE toroidal 
current. 
  

 
 
FIG.6 Left panel shows the time evolution of the spatiotemporal electron density profile model used in the KORC RE 
dissipation calculations overlaid with black contours corresponding to the JFIT experimental reconstruction of the 
instantaneous poloidal flux. Right panel shows a comparison of the experimentally measured RE current in DIII-D #164409 
(dashed black line) and the KORC simulation (solid black line). Also shown are the RE energy (green line) and the evolution 
of the RE lost to the wall (red) and those thermalized, i.e., when the momentum drops below $%&. (blue).(Adapted from [7]). 
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HIGH MOMENTUM SUPRESION OF RADIAL DIFFUSIVITY
Probability of runaway as function of (r , ζ) at fixed p.



CONCLUDING REMARKS

I The probabilistic approach shifts attention from the
computation of the RE distribution (e.g., solving the FP eq)
to the computation of the probability of runaway PRE

I The PRE “maps” provide by themselves a unique insight on
the RE generation process

I When it comes to the computation of the production rate, the
PRE acts as a Green’s function from which the evolution of
the seed density can be explored for many different initial
conditions

I As a bonus, the probabilistic approach also provides the
expected runaway time

I However the computation of the PRE is not trivial and could
be hard/time consuming

I Here we presented current progress on our approach based on
the use of the Feynman-Kac formula



CONCLUDING REMARKS

I The Feynman-Kac formula approach (also known as the
Backward Monte Carlo method) reduces the problem to the
computation of Gaussian integrals that can be computed
efficiently using Gauss-Hermite quadrature algorithms

I There is also the need for interpolation that we do using
picewise cubic Hermite interpolation polynomials.

I A GPU accelerated matrix representation was implemented to
compute the entire time evolution of the exit time probability
using a single pass of the algorithm.

I We discussed applications to different disruption scenarios in
3D+time (radius, pitch angle and momentum)

I Of particular interest was the dependence of the production
rate on confinement losses cause by magnetic field
stochasticity that we modeled we radial diffusion

I Future work includes more detailed orbit dynamics and
dynamic coupling to the plasma state [Hirvijoki, et al., Phys. of

Plasmas 25, 062507 (2018)].


