Generation of Seed Runaway Electrons: Spatio-Temporal Effects in Dynamic Scenarios

D. del-Castillo-Negrete Oak Ridge National Laboratory USA

Work done in collaboration with M. Yang, G. Zhang, and M. Beidler (ORNL)

> IAEA/PPPL Theory and Simulation of Disruptions Workshop Virtual meeting

July 19-23, 2021 ←□ > ← ♂ > ← ≧ > ← ≧ > → ≥ → ⊃ < ♡ < ♡

A BRIEFF SUMMARY / ADVERTISEMENT OF RECENT WORK AT ORNL

- Seed runaway electrons problem
- Dissipation of runaway electrons in post-disruption plasmas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polarization of synchrotron emission

THE SEED RUNAWAY ELECTRON PROBLEM

- For a given plasma state (temperature drop, electric field evolution, magnetic field stochasticity, etc...), how many electrons become runaways before the second generation (avalanche) kicks in?
- Not knowing this is one of the weakest links in the assessment of the potential dangers of runaways in ITER and beyond
- The exponential growth predicted/assumed in the avalanche second generation process depends critical on the seed density
- The seed production depends on not well understood process including the nontrivial spatiotemporal evolution of the magnetic field stochasticity and the plasma cooling history
- This problem is one of the main deliverables of the DOE Theory Performance Targets for the SCREAM SciDAC project

THE SEED RUNAWAY ELECTRON PROBLEM

- What is needed is an accurate computational tool that allows the efficient/fast exploration of different disruption scenarios
- At the minimum, this tool should be able to incorporate arbitrary time dependences in model parameters as well as spatial effects (loss of confinement)
- Here we present recent progress on the ongoing development of a unique computational approach to this problem
- The first installment of this idea was published some time ago [Zhang and del-Castillo-Negrete, Phys. Plasmas 24, 092511 (2017).]
- Recently, we have made significant progress
 - M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov, Accepted in Journal of Computational Physics (2021). https://arxiv.org/abs/2104.14561
 - D. del-Castillo-Negrete, M.Yang, M. Beidler G. Zhang, IAEA. 28th Int. Conference. IAEA-CN-286/101. Online (2021).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

STANDARD APPROACH FOR THE COMPUTATION OF SEED RE DENSITY

- Solve the FP equation for a Maxwellian i.c. to get $f(\mathbf{r}, \mathbf{p}, t)$
- Prescribe the "runaway region", Ω_{RE}, based on a model and/or physical intuition
- lntegrate $f(\mathbf{r}, \mathbf{p}, t)$ over the runaway region

$$n_{RE}(t) = \int_{\Omega_{RE}} f(\mathbf{r}, \mathbf{p}, t) \, d\Omega$$

Example (among several others in the literature):

A. Stahl, et al., Nucl. Fusion 56 (2016) 112009

・ロト・西ト・西ト・西ト・日下

PROBABILISTIC APPROACH

 Compute the probability, P_{RE}, that an electron located at (r, p) will runaway at or before time t

Integrate over the whole space

ADVANTAGES OF THE PROBABILISTIC APPROACH: P_{RE} IS INDEPENDENT OF THE INITIAL CONDITION

- An advantage of the probabilistic approach is that P_{RE} is a kind of Green's function for the RE seed density computation
- That is, once P_{RE} is computed, the RE seed production can be directly evaluated for any initial condition, f₀, by simply doing the integral

$$n_{RE}(t) = \int P_{RE}(\mathbf{r},\mathbf{p},t) f_0(\mathbf{r},\mathbf{p}) d\Omega$$

- This allows the fast evaluation of different i.c. scenarios
- On the other hand, in the standard approach, for each initial condition, f₀(**r**, **p**), we have to solve the whole time-dependent Fokker-Planck initial value problem to get f(**r**, **p**, t)

$$n_{RE}(t) = \int_{\Omega_{RE}} f(\mathbf{r}, \mathbf{p}, t) \, d\Omega$$

- In the probabilistic approach, the runaway region $\Omega_{RE}(\mathbf{r}, \mathbf{p}, t)$ corresponds to the region where $P_{RE}(\mathbf{r}, \mathbf{p}, t) \sim 1$
- In 3D (p, ζ, r), the boundary of Ω_{RE}(r, p, t) is not sharp and its time-dependent shape can be highly nontrivial.
- This can be problematic for analytical studies based on the standard approach that assume a simple shape of Ω_{RE}

THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS

= 900

THE PROBABILISTIC APPROACH ALLOWS THE EFFICIENT EXPLORATION OF DIFFERENT DISRUPTION SCENARIOS

THE PROBABILISTIC APPROACH ALSO PROVIDES THE EXPECTED RUNAWAY TIME

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

HOW TO COMPUTE THE PROBABILITY OF RUNAWAY PRE?

- Direct Monte-Carlo [Fernandez-Gomez, et al., Phys. Plasmas (2012)]. Straightforward to implement but inefficient and potentially inaccurate due to statistical sampling errors.
- Adjoint Fokker-Planck [Liu, et al., Phys. Plasmas (2016)]. Elegant and more efficient than the direct MC, but it requires the numerical solution of a PDE.
- Backward-Monte Carlo [Zhang et al., Phys. Plasmas (2017); Yang et al., Journal Comp. Phys. (2021)]. Based on the Feynman-Kac formula. Reduces the problem to the computation of Gaussian integrals. No MC sampling or PDE solving required! Efficient and unconditionally stable.

PROPOSED FEYNMAN-KAC BASED METHOD (Simple version)

To simplify the discussion, consider the following pitch angle, ξ, and momentum, p, Fokker-Plank model

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial p}(b_1 f) + \frac{\partial}{\partial \xi}(b_2 f) - \frac{1}{2}\frac{\partial^2}{\partial \xi^2}(\sigma^2 f) = 0$$

 In this case P_{RE}(T – t, p, ξ) = P(t, p, ξ) where P(t, p, ξ) is the solution of adjoint FP which according to the Feynman-Kac formula is given by the conditional expectation

$$P(t, p, \xi) = \mathbb{E}[\chi(p_T, \xi_T) | p_t = p, \xi_t = \xi$$
$$\chi(p_T, \xi_T) = \begin{cases} 1, & \text{if } p_T \ge p_*, \\ 0, & \text{otherwise,} \end{cases}$$

where p_t and ξ_t are the paths of the stochastic equations

$$dp_t = b_1(p_t, \xi_t) dt,$$

$$d\xi_t = b_2(p_t, \xi_t) dt + \sigma(p_t, \xi_t) dW_t$$

DISCRETIZATION OF FEYNMAN-KAC FORMULA REDUCES THE COMPUTATION TO GAUSSIAN INTEGRALS

• Introduce a partion $\mathcal{T} = \{0 = t_0 < t_1 < \cdots < t_N = T\}$, of [0, T], and for small $\Delta t = t_{n+1} - t_n$ approximate

$$\begin{aligned} p_{t_{n+1}} &\approx p_{t_n} + b_1(p_{t_n},\xi) \,\Delta t \\ \xi_{t_{n+1}} &\approx \xi_{t_n} + b_2(p_{t_n},\xi_{t_n}) \,\Delta t + \sigma(p_{t_n},\xi_{t_n}) \,\Delta W, \end{aligned}$$

• Within the time interval $[t_n, t_{n+1}]$, write

$$P(t_n, p, \xi) = \mathbb{E} \left[P(t_{n+1}, p_{t_{n+1}}, \xi_{t_{n+1}}) \mid p_{t_n} = p, \xi_{t_n} = \xi \right].$$

and, using the Gaussian propagator, approximate

$$P(t_n, p, \xi) \approx \int_{\mathbb{R}} P(t_{n+1}, p + b_1 \Delta t, \xi + b_2 \Delta t + \sigma x) \frac{e^{-\frac{1}{2}\frac{x^2}{\Delta t}}}{\sqrt{2\pi\Delta t}} dx,$$

which can be computed using Gauss-Hermite quadrature rules.

Also, an interpolation in (ξ, p) space is needed at each step.

Some advantages of the method

- Unconditionally stable (no need to solve PDEs)
- Second order convergence in space, first order in time
- No need to sample orbit (no MC noise)
- Straightforward to parallelize.
- Further details of the method, including:
 - GPU accelerated matrix representation implementation for time-dependent models, e.g. T = T(t) and E = E(t).
 - Use of piecewise cubic Hermite interpolating polynomials
 - 3D examples including applications to fluid mechanics
 - Benchmarks with analytical solutions and comparisons with explicit and implicit adjoint Fokker-Planck solvers

can be found in:

M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov, "A Feynman-Kac based numerical method for the exit time probability of a class of transport problems." Accepted for publication in Journal of Computational Physics (2021).

3D RUNAWAY ELECTRON ACCELERATION MODEL

3D+1 Fokker-Planck equation for $f(r, p, \xi; t)$

$$rac{\partial f}{\partial t} = \mathcal{F} + \mathcal{R} + \mathcal{C} + \mathcal{D}, \qquad ext{with}$$

• Electric field force
$$\mathcal{F}{f} = -E\left[\xi \frac{\partial f}{\partial p} + \frac{(1-\xi^2)}{p} \frac{\partial f}{\partial \xi}\right]$$

Synchrotron radiation reaction force

$$\mathcal{R}\lbrace f\rbrace = \frac{1}{\tau} \left\{ \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^3 \gamma \left(1 - \xi^2 \right) f \right] - \frac{\partial}{\partial \xi} \left[\frac{1}{\gamma} \xi \left(1 - \xi^2 \right) f \right] \right\} \,.$$

Collision operator

$$\mathcal{C}\lbrace f\rbrace = \frac{1}{p^2} \frac{\partial}{\partial p} \left\{ p^2 \left[C_A \frac{\partial f}{\partial p} + C_F f \right] \right\} + \frac{C_B}{p^2} \frac{\partial}{\partial \xi} \left[\left(1 - \xi^2 \right) \frac{\partial f}{\partial \xi} \right] \,,$$

Radial diffusion operator

$$\mathcal{D}\{f\} = \frac{1}{r} \frac{\partial}{\partial r} \left[r D \frac{\partial f}{\partial r} \right],$$

COLLISIONS MODEL

$$\begin{split} C_A(p) &= \bar{\nu}_{ee} \, \bar{v}_T^2 \, \frac{\psi(x)}{x} \\ C_B(p) &= \frac{1}{2} \, \bar{\nu}_{ee} \, \bar{v}_T^2 \, \frac{1}{x} \left[Z + \phi(x) - \psi(x) + \frac{\delta^4}{2} x^2 \right] \\ C_F(p) &= 2 \, \bar{\nu}_{ee} \, \bar{v}_T \, \psi(x) \, . \end{split}$$

where $x = \frac{1}{\bar{v}_T} \frac{p}{\gamma} \, , \qquad \gamma = \sqrt{1 + \left(\tilde{\delta}p\right)^2} \, , \qquad \tilde{\delta} = \frac{\tilde{v}_T}{c} = \sqrt{\frac{2\tilde{T}}{mc^2}} \\ \phi(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds \, , \qquad \psi(x) = \frac{1}{2x^2} \left[\phi(x) - x \frac{d\phi}{dx} \right] \end{split}$

and the time dependence enters through the variables

$$ar{v_T}(t) = \sqrt{rac{\hat{T}}{ ilde{T}}}\,, \qquad ar{
u}_{ee}(t) = \left(rac{ ilde{T}}{ ilde{T}}
ight)^{3/2}\,rac{\ln\hat{\Lambda}}{\ln ilde{\Lambda}}\,, \qquad \delta(t) = \sqrt{rac{2 ilde{T}}{mc^2}}$$

where $\hat{\mathcal{T}}(t)$ denotes the time-dependent plasma temperature

∃ 900

DIFFUSION, COOLING, AND ELECTRIC FIELD MODELS

Rechester-Rosenbluth type radial diffusion model

$$D = \hat{D}_0 F(r) G(p), \qquad \hat{D}_0 = \pi q v_{\parallel} R \left(\frac{\delta B}{B} \right)^2,$$

with spatial and momentum dependence

$$F(r) = rac{1}{2} \left\{ 1 + anh\left[rac{r-r_D}{L_D}
ight]
ight\}, \qquad G(p) = e^{-(p/\Delta p)^2}.$$

Exponential cooling model with thermal quench time scale t_{*}

$$\hat{T} = \hat{T}_f + \left(\hat{T}_0 - \hat{T}_f\right) e^{-t/t_*},$$

 Electric field dependence from Ohms's law and Spitzer conductivity

$$E(t) = E_0 \left[\frac{\hat{T}_0}{\hat{T}(t)} \right]^{3/2} .$$

PROBABILITY OF RUNAWAY IN 3-DIMENSIONS Momentum \times Pitch Angle \times Minor Radius space

TIME EVOLUTION OF 3-D 80% PROBABILITY OF RUNAWAY ISO-SURFACE

DEPENDENCE OF SEED RUNAWAY ELECTRONS ON THERMAL QUENCH TIME SCALE

- Seed production has a strong dependence on thermal quench time and initial temperatura
- There is a weaker dependence on Z
- Diffusion reduces the gradient of the radial seed density profile at the edge and this effect increases with the termal quench time
- If the electric field does not grow fast enough, radial diffusion will deconfine the electrons before they can be accelerated
- The onset of the saturation of the seed runaway population is significantly affected by the duration of the thermal quench.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

DEPENDENCE OF SEED RUNAWAY ELECTRONS ON RADIAL DIFFUSIVITY

- As expected, seed production decreases when D₀ increases and this effect is more noticiable near the edge
- Increasing the radial diffusivity leads to the "flattening" of the seed production rate profile
- However, the onset of the saturation of the seed runaway population is not affected by the value of D₀.

D₀ normalized by 10⁴ m²/s

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

DEPENDENCE OF SEED RUNAWAY ELECTRONS ON ELECTRIC FIELD

- · Seed production exhibits the typical increase with E₀
- As the electric field decreases the profiles become slightly shallow due to the loss of confinement before runaway acceleration
- The electric field can also significantly delay the onset of the seed RE generation

 E_0 normalized by $E_D/2^2 V/m$

RE_Production_E_r_dependence_04052021.m

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

DEPENDENCE OF SEED RUNAWAY ELECTRONS ON MOMENTUM AND RADIAL DEPENDENCE OF DIFFUSIVITY

As a simple model of the increased stochasticity at the edge and the suppression of diffusion for high energy RE we consider

$$D(r,p) = rac{D_0}{2} \left\{ 1 + anh\left[rac{r-r_D}{L_D}
ight]
ight\} e^{-(p/\Delta p)^2}$$

where D_0 is the Rechester-Rosenbluth diffusivity

э

HIGH MOMENTUM SUPRESION OF RADIAL DIFFUSIVITY Probability of runaway as function of (r, ζ) at fixed p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CONCLUDING REMARKS

- The probabilistic approach shifts attention from the computation of the RE distribution (e.g., solving the FP eq) to the computation of the probability of runaway P_{RE}
- The P_{RE} "maps" provide by themselves a unique insight on the RE generation process
- When it comes to the computation of the production rate, the P_{RE} acts as a Green's function from which the evolution of the seed density can be explored for many different initial conditions
- As a bonus, the probabilistic approach also provides the expected runaway time
- However the computation of the P_{RE} is not trivial and could be hard/time consuming
- Here we presented current progress on our approach based on the use of the Feynman-Kac formula

CONCLUDING REMARKS

- The Feynman-Kac formula approach (also known as the Backward Monte Carlo method) reduces the problem to the computation of Gaussian integrals that can be computed efficiently using Gauss-Hermite quadrature algorithms
- There is also the need for interpolation that we do using picewise cubic Hermite interpolation polynomials.
- A GPU accelerated matrix representation was implemented to compute the entire time evolution of the exit time probability using a single pass of the algorithm.
- We discussed applications to different disruption scenarios in 3D+time (radius, pitch angle and momentum)
- Of particular interest was the dependence of the production rate on confinement losses cause by magnetic field stochasticity that we modeled we radial diffusion
- Future work includes more detailed orbit dynamics and dynamic coupling to the plasma state [Hirvijoki, et al., Phys. of Plasmas 25, 062507 (2018)].