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Motivation: Essential to predict wall damage due to
post-disruption runaway electrons (REs)

 Need to estimate material lifetime and design RE mitigation
systems for ITER and future reactors

» Select between high-Z and low-Z secondary injection that
leads to significantly different RE wall impacts

— Unstable MHD mode develops as flux surfaces scrape off during impact
- Low-Z: one large strike, high kinefic energy, large wetted area
- High-Z: many small sirikes, low kinetic energy, small wetted area

 Limited diagnostics to interpret RE wall strikes include infrared
imaging (IR), HXR spectra, post-mortem analysis

- Leaves impacting RE energy and pitch angle distributions undetermined
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Background: Study enabled by recent modeling
advances and ITPA DivSOL/MDC collaboration
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* High-fidelity models for volumetric
energy deposition (GEANT4) and melt
damage (MEMOS-U) used with analytic
RE impacts

— Chen et al., AAPPS contribution MF2-114

(2021) Chen et al., AAPPS (2021)
KORC Initial KORC Secondary DIII-D IR
« High-fidelity model for RE impacts 0750 Teosts | [imtoorts (|| |EREER
(KORC) used with a simple model for 05/ I -
volumetric energy deposition and melt oz 1 .
damage E o [
~ Beidler et al., in preparation (2023) 025 fH b
- KORC: Kinetic Orbit Runaway electrons 05 20
Code evolves particle-based RE distribution o7t [ [, s A
« Carbaijal et al., Phys. Plasmas (2017) e e

Beidler et al., in preparation (2023),
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DIlI-D experiment pushes RE beam down to impact DIMES

« Form RE beam with Ar pellet injection JFIT reconstructions

t=1740 ms t=1750 ms t=1760 ms

 Inject 200 Torr — L H, to form a

low-resistivity “purged” RE plateau 1 ”\ 1
« Ramp current up to 500 kA oAl
c

* Elongate and kick down ’ v ;
so beam drifts down DIMES ATI 1 cm DOMED SAMPLE N /N
info lower divertor R13 toe

o T t=1762 ms t=1764 ms t=1766 ms

* Radially, impact
is directly on
DIMES

- Wong et al., J. Nucl.
Mat. 258-263, 433 (1998)

- Graphite dome Pz, | . N7
protruding 1cm s | 1 2
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Infrared imaging movie of RE beam impact on DIMES
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Complex phenomenology of multi-phase final loss not
completely modeled

¢ Two-stage final loss with MHD » This work uses EFIT reconstruction at
appearing in the second stage 1762.75ms

- Appears to have significant graphite
sublimation into the remaining RE beam

1760ms 1762ms 1765ms

191366, MPID79B
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Modeling uses EFIT reconstruction of DIII-D 191366

DIII-D #191366 @ 1762.75ms

_Q/Jp/27r BR,() (T) BO}] (T),

o

1 1.5 2 2.5
R{m)

.. EFIT poloidal flux g = _1 « Toroidal field in —¢ direction

2m P with current oppositely aligned

— . _—> — _ 1 ~ = -
= By = —Vpgrr XV = — dXVihgpr ~ RE pitch angle n = acos(p - b) < 90°
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MARS-F 3D perturbation fields scaledion =1

experimental signals on DIII-D final loss events

DIll-D #191366
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Toroidal array of magnetic pickup coils
¢ fitton = 1inIds 36.26 P P

- Located at plus in lower-right of plots

field to experimental fit and shift
toroidal phase

— Results in 3D 6B/B~1%
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Graphite dome in DIMES is modeled as semi-spheroid

« Semi-spheroid surface given by ,
2
Z—Zp )

2 2 2
b, =X —Xp)* +(y— + (
p = ( D) (¥ —¥p) ho/TD
- Center at (Rp, ¢p, zp) = (1.485m, 150°, —1.245m)
— Dimensions (rp, hp) = (0.025,0.01) m N
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Significant number of REs are deposited onto DIMES
dome, but many REs deconfined elsewhere

1
N
N O
-1
2
2
DIMES” ?
dome 0
Y -2 -2 X
¢ Full orbit trajectories without « Initial RE beam is uniform within LCFS,
collisions or electric field monoenergetic with % = 10MeV, and
acceleration monopitch with n = 10°
_ No sheath dynamics included - Let unconfined REs exit calculation with

equilibrium fields before continuing
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Preliminary analysis exhibits some qualitative agreement
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Preliminary analysis exhibits some qualitative disagreement

 Modeling yields a
shadow behind DIMES
that is less prominent
in experimental IR 1

_:II.
1

- IR from long after large = .
MHD event

N NWN

 Modeling yields RE
deconfinement into
lower divertor region 08
that isn’t observed in * 06 o8
experimental IR

Shadow 1.4
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More REs strike DIMES at lower pitch angle, scaling with
energy is more complicated

Varying pitch at K = 3MeV

10
S e s
« Simulations of varying pitch £
angle show more REs strike & 100 i |
DIMES at lower pitch angles F ————
- Total deconfined REs ; = i |
independent of pifch angle L eeaumss
e 0 20 40 60 40 100
- Simulations varying energy S —
show REs sirike DIMES (dotted 2 T
traces) in a two-stage process Z
at lower energy Q
- Same frend for total deconfined g
REs (solid traces) : — o DIVES €= 103eV
E — K =1MeV
e All REs |
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Calculations show pitch scattered lower energy REs
impact shadowed side of DIMES in second stage loss

K =3 MeV . K = 1MeV
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Conclusions
Future Work

« Analytic wall capability in KORC can -
model a graphite dome sample in
DIiMES

* Preliminary KORC simulations of RE
impact on graphite dome in DIiMES
show qualitative agreement

» Collisionless pitch angle scattering in
stochastic magnetic fields leads to
delayed RE deconfinement for lower
energy REs

Rizzi et al.,
DivSOL ITPA
(2023)

9000-1000 K colormap
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Rerun calculations with a
GPU-enabled version of KORC

Prepare DIMES-impacting RE
distributions for use in
GEANT4/MEMENTO workflow

Run tracer particles in time-evolving
extended-MHD simulations of RE wall
impact

1 ms
,

8000

—— With magnetic field
7000 —— Without magnetic field |1

Temperature [K]

0 0.5 1 15 2
Distance from top [mm)]



Extra Slides

%OAK RIDGE  DIN-pD

National Laboratory




Toroidal phase of MARS-F 3D mode is adjusted to match
n = 1 signal from DIlI-D toroidal magnetic coil array

o © 0 o
° . ° ° ggz: DiMOES O o o 4:)
« Maximum n = 1 signal at coil array ® chot s
at toroidal angle I S L
P maxi1-p ag)~280° oo o _ |
« Maximum absolute value of MARS- o ° )
F computed B, at coil array at |
toroidal angle
¢max(MARS dB) ~27°(207°) A
. ormao MARS-F
* Use phase shift of 253°(73°) computed
By atcoil =
array 2
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KORC full orbit simulations with MARS-F 3D fields show
qualitative agreement with experimental results
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Low-Z discharge with large MHD mode leads to
deconfined REs with increased energy deposition length
scale which could result in deeper PFC damage
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