Design of Passive and
Structural Conductors for
Tokamaks Using Thin-Wall
Eddy Current Modeling

REMC B, n1(G), t=0.00ms
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3D eddy currents can be an important consideration for
tokamak design and engineering

* Large eddy currents are induced in tokamak conducting structures during both start-up
and plasma disruptions

* These eddy currents can produce large non-axisymmetric fields which can:
» Affect magnetic field null for start-up
* Induce large forces on conducting components
* Drive dangerous MHD instabilities

* Conducting paths can also be explicitly designed to generate desirable 3D fields, such as
the proposed Runaway Electron Mitigation Coils (REMCs)

* The ability to model these conductors and their interactions with high fidelity early in the
design process is important capability for tokamak engineering
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Runaway Electron Mitigation Coils (REMC) couple to loop

voltage produced by disruption current quench

* Runaway electrons (RE) are generated during a disruption
current quench (CQ)
* RE avalanche drives exponential growth (~1))

* Passive non-axisymmetric coil designhed to inductively couple
to changing plasma current

* Current driven by large toroidal electric field created during CQ

* If properly designed the coil will produce large 3D field during CQ
* Will destroy confining flux surfaces and drive large deconfining MHD
* Both DIII-D and SPARC REMC are designed to create n=1 radial field

* Modeling and experiment have demonstrated the efficacy of 3D field in
deconfining REs
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Outline

* The ThinCurr 3D thin-wall E-M code
* Runaway Electron Mitigation Coil modeling for DIlI-D and SPARC

* Coil to vessel separation (DIII-D only)
* Coil resistance

e Current quench duration

* Vertical displacement

* Design of REMC-like coil for validation on HBT-EP
* Conclusions and future work
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ThinCurr is a new 3D thin-wall eddy current modeling tool
based on the PSI-Tet 3D MHD code

* Workflow begins with CAD model of tokamak conducting
structures (VV, etc.)

* Geometry is reduced to sheet representation (thin-wall limit)

* These models are then defeatured to optimize
computation

* Important details such as port holes, stability plates, etc. are
retained

* The surfaces are then meshed to the desired resolution
 Different components can have higher/lower resolution

* Different materials and thickness can all be captured in a
single model .
* DIlI-D model has 4 resistivities
e SPARC model has 6+ resistivities Dil-D
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coupled circuit equations discretized with a finite

—elements

~ Physics governed by inductance/resistance

al;
Lij—, + Rijli = V()

« Additional currents/voltages can be included

* Filament coils (I(t) or V(t)) REMC B,.,1(G), t=0.00ms
* Plasma “modes” (eg. DCON)

* Magnetic fields available anywhere in space =™
* Sensor signals with eddy currents S ]

* Lorentz forces on structures
* Discontinuities in BXn at surfaces
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Outline

* Runaway Electron Mitigation Coil modeling for DIlI-D and SPARC
* Coil to vessel separation (DIII-D only)
* Coil resistance
e Current quench duration
* Vertical displacement
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Multiple studies were completed to assess effectiveness
and inform the design of DIII-D and SPARC REMCs

* REMC designs modeled using the ThinCurr code

* Simulated with fully 3D REMC models

* Coil modeled as thin sheet with variable resistor
* Toroidally flowing current measured using “jumper”

* Effect of standoff, variable resistor value, CQ time,
and vertical plasma position

* Publication on results: A. Battey, et al. under review
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DIII-D’s coil location makes it sensitive to position S
relative to the center stack structure

SSSSSSSS

* Eddy currents induced in the center stack significantly  DIIl-D REMC Stand-off Height Scan
. Q| ||| e Sae.
slow the time-response = s ==
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External resistors can be added to limit total impulse, but

can also reduce REMC-produced field during CQ

SPARC REMC Resistance Scan DIII-D REMC Resistance Scan
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Primarily impacts current mid to late in CQ (inductively limited early in time)
- On SPARC longer characteristic vessel times maintain currents for longer
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REMC-produced field stays fairly constant across expected
current quench durations in SPARC and DIII-D

SPARC REMC CQ Time Scan DIII-D REMC CQ Time Scan
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For SPARC, the applied field depends only weakly on CQ length

« Current induced in the coil varies by 43%
« Eddy currents limit the applied field more for fast quenches, leading to a nearly constant value (5%)
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REMC-produced field stays fairly constant across expected
current quench durations in SPARC and DIII-D

SPARC REMC CQ Time Scan DIII-D REMC CQ Time Scan
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DIlI-D REMC field is lower for the fastest CQ times, before plateauing
« Peak in applied field occurs at intermediate (larger than common experimental) CQ times

« Caused by strong reduction in effective plasma-REMC coupling on fast time scales (due to VV)
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For VDEs the coupling to the REMC and the magnitude of
the REMC-produced field on the plasma changes in time

* Important for REMCs to be robust to vertically smgf‘.
unstable plasmas Yy
* Performance evaluated for vertically shifted plasma REMC By, n1(G), t=0.00ms

1.5

* Circular cross section plasma shifted vertically
* CQ always modeled with a stationary position
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The SPARC and DIII-D designs exhibit different changes in
REMC effectiveness during VDEs
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* Important for REMCs to be robust to vertically
unstable plasmas
* Performance evaluated for vertically shifted plasma
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 While SPARC REMC applies a slightly weaker w
radial field its vertical field quickly grows

* Due to position of coil on upper low-field side
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The SPARC and DIII-D designs exhibit different changes in
REMC effectiveness during VDEs

* Important for REMCs to be robust to vertically
unstable plasmas Sesmmea?”
* Performance evaluated for vertically shifted plasma | P\\

* Circular cross section plasma shifted vertically
* CQ always modeled with a stationary position

While SPARC REMC applies a slightly weaker
radial field its vertical field quickly grows DIN-D
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* Due to position of coil on upper low-field side
* More than compensates for decreasing radial field
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* By contrast the performance of the DIlI-D REMC
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The SPARC and DIII-D designs exhibit different changes in
REMC effectiveness during VDEs

-,

(Y
SPARC =
R4

* Important for REMCs to be robust to vertically
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Outline

* Design of REMC-like coil for validation on HBT-EP
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An REMC-like coil has been proposed for HBT-EP to HEBEP
validate E-M and plasma response models

* An REMC-like coil was designed for HBT-EP to
validate ThinCurr and related models

* Focused on validating plasma-coil coupling
* |nstall and test within 2 years

* Coil can be passively driven (disruptions) or
actively driven by external supplies

e Study plasma response
* Interact with startup-generated runaways

* Leverages unique features of HBT-EP
e Control coil array for baseline comparison

* Poster by Braun
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An REMC-like coil has been proposed for HBT-EP to
validate E-M and plasma response models

* An REMC-like coil was designed for HBT-EP to
validate ThinCurr and related models -

* Focused on validating plasma-coil coupling 7 \qw
* |nstall and test within 2 years
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* Coil can be passively driven (disruptions) or
actively driven by external supplies
e Study plasma response
* Interact with startup-generated runaways
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* Leverages unique features of HBT-EP
e Control coil array for baseline comparison
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* High-resolution magnetics (fields and plasma response)
* Moveable walls (field at plasma surface)
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An REMC-like coil has been proposed for HBT-EP to
validate E-M and plasma response models

* An REMC-like coil was designed for HBT-EP to

. . s
validate ThinCurr and related models //7 Gam,
e t1ul
* Focused on validating plasma-coil coupling /c, AR =
* Install and test within 2 years &\ '%@\L —
< [ | Li | B
* Coil can be passively driven (disruptions) or Sl I

actively driven by external supplies
e Study plasma response
Electrically Isolated Outer Vessel Segments
* Interact with startup-generated runaways ' Connected Outer Vessel Segements

* Leverages unique features of HBT-EP
e Control coil array for baseline comparison
* High-resolution magnetics (fields and plasma response)
* Moveable walls (field at plasma surface)
e External VV jumpers (plasma-coil coupling)
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An REMC-like coil has been proposed for HBT-EP to HEBEP
validate E-M and plasma response models

* An REMC-like coil was designed for HBT-EP to
validate ThinCurr and related models
* Focused on validating plasma-coil coupling
* |nstall and test within 2 years

* Coil can be passively driven (disruptions) or
actively driven by external supplies
e Study plasma response
* Interact with startup-generated runaways

* Leverages unique features of HBT-EP
e Control coil array for baseline comparison
* High-resolution magnetics (fields and plasma response)
* Moveable walls (field at plasma surface)
e External VV jumpers (plasma-coil coupling)
* Proposed structural force sensors
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Conclusions

* The newly developed ThinCurr 3D E-M modeling code has been used to
predict the behavior of REMC coils proposed for DIII-D, SPARC, and HBT-EP

* Code is open-source and available for other applications as well (reach out to me)
 Standoff height was found to be particularly import for DIlI-D REMC design

* Both DIII-D and SPARC coils exhibit only modest performance dependence on
current quench duration

* For VDEs, the strength of the applied field appears more consistent for the
SPARC design than the DIII-D design

* A coil has been designed and proposed for HBT-EP to enable the validation of
E-M and some plasma response models for REMCs
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