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Staggered shattered pellet injection is considered for 

disruption mitigation on ITER

• Shattered pellet injection (SPI) is chosen for 

disruption mitigation on ITER

• Both low-Z and high-Z material needed

• But use of mixed or staggered SPI is yet to 

be decided

• Low-Z SPI slowly cools plasma, suppresses 

runaways via dilution and collisions

• High-Z SPI dissipates thermal energy via 

radiation, also sets current quench time

• Does staggered SPI work as planned?

• This talk: study of temperature and density 

profiles after low- and high-Z SPI on DIII-D

Staggered SPI:
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DIII-D is well suited to study shattered pellet injection

• The SPI system closest to Thomson 

scattering viewpoints is analyzed in 

this talk

• Thomson scattering provides plasma 

temperature and density profiles
o Covers both plasma core and edge
o Recent upgrade with narrow-

bandwidth filters allows low-Te

measurements
o Can be triggered asynchronously 

(e.g. using ablation light signal) to 
reliably catch plasma cooling 
dynamics

• Other diagnostics provide pellet 

imaging, line-integrated density, soft 

X-ray, total radiated power
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Mixed Ne/D2 SPI quickly disrupts the plasma

• Mixed Ne/D2 shattered 

pellet (400/400 Torr∙L) is 

injected into Super H-

mode plasma

• It quickly (in 3 ms) disrupts 

plasma via radiative 

collapse

• Injected material doesn’t 

go past q=2 before TQ

Non-thermal electrons: 

Hollmann et al, NF 2021

Weak penetration

past q=2



19 A. Lvovskiy/Density and Temperature Profiles after Low-Z and High-Z SPI on DIII-D/TSDW/2023

Mixed Ne/D2 SPI quickly disrupts the plasma and penetrates 

into the core during and after thermal quench (TQ)

• Mixed Ne/D2 shattered 

pellet (400/400 Torr∙L) is 

injected into Super H-

mode plasma

• It quickly (in 3 ms) disrupts 

plasma via radiative 

collapse

• Injected material doesn’t 

go past q=2 before TQ, 

but mixes with the plasma 

during TQ

Non-thermal electrons: 

Hollmann et al, NF 2021

Impurity goes

towards the core



20 A. Lvovskiy/Density and Temperature Profiles after Low-Z and High-Z SPI on DIII-D/TSDW/2023

Mixed Ne/D2 SPI quickly disrupts the plasma and penetrates 

into the core during and after thermal quench (TQ)

• Mixed Ne/D2 shattered 

pellet (400/400 Torr∙L) is 

injected into Super H-

mode plasma

• It quickly (in 3 ms) disrupts 

plasma via radiative 

collapse

• Injected material doesn’t 

go past q=2 before TQ, 

but mixes with the plasma 

during and after TQ
o Core density increases by 

2x−4x after TQ

Non-thermal electrons: 

Hollmann et al, NF 2021

Profile

flattens
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dilution and radiation over 

more than 15 ms
o No classical TQ is observed

• Plasma energy decreases 

4-fold by the Ip-spike time

• Plasma disrupts when n=1 

amplitude reaches 45 G
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D2 SPI slowly cools the plasma, it disrupts due to locked modes

• Pure D2 shattered pellet 

(700 Torr∙L) is injected into 

H-mode plasma 

• It slowly cools plasma via 

dilution and radiation over 

more than 15 ms
o No classical TQ is observed

• Plasma energy decreases 

4-fold by the Ip-spike time

• Plasma disrupts when n=1 

amplitude reaches 45 G

• Very weak penetration 

past q=2 is observed 

before TQ

Edge 

accumulation
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D2 SPI slowly cools the plasma, it disrupts due to locked 

modes, poor core mixing is observed

• Another pure D2 SPI case 

with Thomson covering 

late cooling phase

• Similar delayed disruption

• Temperature profiles show 

relatively slow core 

cooling (>3 ms)

• Post-SPI elevated density 

profile decreases over 

time

• Density does not flatten 

even after the Ip-spike
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INDEX simulations are employed to interpret observed post-SPI 

density profiles
• INDEX is a 1.5D code self-consistently solving transport equations in magnetic flux 

coordinates coupled to Grad-Shafranov equilibrium calculations1,2

• It evaluates the SPI ablation rate based on the Neutral Gas Shielding model3

• The ablated particles are included as the surface-averaged neutral source in the 

particle balance, and the subsequent ionization processes are solved using the rate 

equations

• The SPI model was extended to include the effect of outward mass relocation due to 

the grad-B-induced (ExB) drift4−6

• Presently grad-B-induced drift is not based on first principles but employs simplified 

considerations following the back-averaged model7

[1] Matsuyama et al, IAEA FEC 2021  

[2] Matsuyama et al, PPCF 2022

[3] Parks and Turnbull, Phys. Fluids 198

[4] Rozhansky et al, PPCF 1995

[5] Parks et al, PoP 2000

[6] Pegourie et al, NF 2006

[7] Jardin et al, NF 2000
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Grad-B-induced drift of ablation cloud to the edge can 

explain limited core fueling after D2 SPI 

• INDEX with grad-B-induced drift (ExB

drift) well reproduces the experiment 

with pure D2 SPI

• Estimated that only 10% of injected 

material is assimilated
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Grad-B-induced drift of ablation cloud to the edge can 

explain limited core fueling after D2 SPI 

• INDEX with grad-B-induced drift (ExB

drift) well reproduces the experiment 

with pure D2 SPI

• Estimated that only 10% of injected 

material is assimilated

• Density profile w/o drift is clearly 

overestimated

• Presumably, low line radiation of D 

plasmoid, heating by surrounding 

plasma and overpressure make the 
drift so significant (𝑑𝑉𝑑𝑟𝑖𝑓𝑡 /𝑑𝑡 ∝ nT)
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Density profile after mixed Ne/D2 SPI is well reproduced 

without grad-B-induced drift enabled

• For comparison, no drift implication 

needed to reproduce the experiment 

with mixed Ne/D2 SPI 

• Though it does not simplify these 

simulations

• Increased radiative cooling may 

make surface-averaged ablation 

rate less accurate
o Accounted via reduced ablation1

• Non-thermal electrons and pre-TQ 

MHD may enhance pellet ablation
o Accounted via increased thermal 

conductivity2

[1] Parks, TSDW 2017

[2] Hollmann et al, NF 2021
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Drift of ablated material is known for fueling pellets, but 

experimental profiles after SPI were obtained for the first time

• Small solid fueling pellets are known to produce plasmoids drifting in inhomogeneous 

magnetic field1−7

• There is a bunch of theoretical models describing such experiments8−15

• However, to our knowledge, there is no experimentally measured deposition of large 

perturbative SPI nor models16*−17* interpreting experimental profiles

• In this work such observations are presented for the first time and a simplified model is 

developed to explain and predict density profiles after pure D2 and mixed Ne/D2 SPI

[1] Lang et al, PRL 1997

[2] Mueller et al, PRL 1999

[3] Baylor et al, PoP 2000

[4] Baylor et al, NF 2007

[5] Terranova et al, NF 2007

[6] Garzotti et al, NF 2010

[7] Baldzuhn et al, PPCF 2019

[8] Strauss et al, PoP 1998

[9] Strauss et al, PoP 2000

[10] Parks et al, PoP 2000

[11] Rozhansky et al, PPCF 2003

[12] Aiba et al, JPS 2004

[13] Pegourie et al, NF 2007

[14] Ishizaki et al, PPCF 2011

[15] Vallhagen et al, JPP 2023

[16*] Samulyak et al, NF 2021

(no comparison with experiment)

[17*] Kong et al, EPS 2022

(comparison with interferometer)
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Modeling suggests that larger shards and greater amount 

injected can improve core penetration

• Increasing shard size improves D penetration into the plasma
o Larger shards have more time to ablate

• Increasing mean speed of shards also improves penetration
o Though in a real experiment greater pellet speed would lead to smaller shards

• Increasing amount injected can also help with core fueling
o Forefront shards cool the plasma reducing ablation of following shards
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Summary and conclusions

• Staggered scheme of low-Z and high-Z SPI is expected to reduce 

thermal loads and provide improved RE suppression

• Experiments on DIII-D show favorable slow plasma cooling after D2 SPI

but poor assimilation of D2 by core plasma even during and after TQ

• 1D modeling suggests grad-B-induced drift of deuterium ablation 

cloud towards the edge caused by low line radiation and heating

• Larger pellet shards and greater amount injected are predicted to 

improve core fueling

• Optimization of H2 SPI in ITER is necessary

Paper is to be submitted to Nuclear Fusion
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Future work

• Experimentally verify predictions of 1D model (very recent study on 

DIII-D, yet to be analyzed)

• Develop mature model based on first principles

• Improve model to:

o include simulations of Ne-doped D2 SPI

o separate effects of grad-B-induced drift, non-thermal electrons, 

pre-TQ MHD for mixed Ne/D2 SPI

o study whole post-SPI dynamics and estimate total material 

assimilation
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Backup
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Assumptions used in the modeling

Δndep = ΔN/[ 1 + 𝛽 Vp 1 − Vp 𝜌′ ]

Back-averaged density increase caused by single shards:

number of atoms ablated 
from the shard

interior plasma volume with 𝜌 < 𝜌′

extent of the radial drift

• Shard size distribution is based on the fragmentation model [Parks GA Rep. 2016, Hu NF 2018] with 
the number of shards chosen based on sensitivity studies

• The average speed is assumed to be 90−100% of the pre-shattered speed, including a small loss of 
the forward momentum

• The speed dispersion is estimated from the laboratory tests [Gebhart FST 2021] and taken as 50% 
with the mass dependence of the shard speed included so that only small shards are distributed in 
the front and rear of the plume

• The fraction of the pellet turned into gas during the shattering process is 30% with only 1/3 of this 
reaching the plasma, while the remaining 2/3 are subtracted from the injected mass as loss
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Appendix

Scan of factor β, assuming that 50% of 
injected mass does not interact with plasma

Scan of thermal transport coefficient χ
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Plasma shrinks during CQ which limits Thomson 

measurements in the core

IP [kA]

LCFS


